
Forcing the Network to use Human
Explanations in its Inference Process

Javier Viaña and Andrew Vanderburg

Abstract We introduce the concept of ForcedNet, a neural network that has been
trained to generate a simplified version of human-like explanations in its hidden lay-
ers. The main difference with a regular network is that the ForcedNet has been ed-
ucated such that its inner reasoning reproduces certain patterns that could be some-
what considered as human-understandable explanations. If designed appropriately,
a ForcedNet can increase the model’s transparency and explainability. We also pro-
pose the use of support features, hidden variables that complement the explanations
and contain additional information to achieve high performance while the explana-
tion contains the most important features of the layer. We define the optimal value
of support features and what analysis can be performed to select this parameter. We
demonstrate a simple ForcedNet case for image reconstruction using as explanation
the composite image of the saliency map that is intended to mimic the focus of the
human eye. The primary objective of this work is to promote the use of intermediate
explanations in neural networks and encourage deep learning development modules
to integrate the possibility of creating networks like the proposed ForcedNets.
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1 Introduction

We are in a time when the exponential use of artificial intelligence is prioritizing
performance over the ability to explain and justify the outcomes from a human per-
spective. The field of eXplainable AI (XAI), which started becoming popular in
2016 [1], has been slowly developing over the last decade, but there is not yet a gen-
eralized method to understand the internal inference process of the widely used deep
neural networks [2, 3, 4, 5]. Nevertheless, some essential ideas such as extracting
meaning from neural networks or relying on existing prior expert knowledge were
already studied in the 90’s [6, 7], which years later evolved into the field of XAI.

This need for understanding becomes more acute with the entry of legislation
such as the General Data Protection Regulation in the European Union on algorith-
mic decision-making and the “right to explanation” when it comes to human data
[8, 9, 10]. However, many of the XAI technologies used for tasks that leverage hu-
man data, such as user experience enhancement or travel demand analysis, do not
meet yet these requirements [11, 12].

In healthcare, the integration of AI largely depends on the trustworthiness of the
algorithm chosen. Explainability is playing a critical role in order to achieve the
validation and verification capabilities desired [13]. In fact, this need for trustwor-
thiness has fostered the development of novel XAI for specific medical applications
that can later be extended to other areas [14, 15, 16].

In engineering, the opposite happened, where human supervision became obso-
lete in those processes that were automated with black box AI and it was not until
the lack of transparency was evident that the awareness of XAI began to be raised.
Over time, several methods have appeared that claim to be explainable in the field,
e.g., from the generative design of motors [17], to their prognosis, health monitoring
and fault diagnosis [18, 19].

Many of the techniques used to generate explanations in neural networks focus
on what are known as post-hoc explanations. This means that once the system is
trained, we add different algorithms that can extract posterior reasoning [20, 21, 22].
Some examples include, semantic web technologies [23], contrastive sample gener-
ation (GRACE) [24], or extracting global symbolic rules [25]. Nonetheless, opting
for methods that extract explanations after the training implies that the network is
not ”aware” of our intention to explain its reasoning. In other words, the opportunity
to add this information during training is lost, which is not only attractive for per-
formance reasons, but also to educate the pipeline so that its inner process is more
human understandable.

Some techniques such as DeConvNet [26], Guided BackProp [27], Layer-wise
Relevance Propagation [28] and the Deep Taylor Decomposition [29] seek to ex-
plain the classifier decisions by propagating the output back through the network to
map the most relevant features of the encoding process. However, more recent work
[30] has shown that these methods do not produce valid explanations for simple lin-
ear models. An alternative approach that has demonstrated to be very successful is
generating more interpretable latent spaces in autoencoders [31, 32, 33, 34]. These
often encode the information taking into account expert knowledge in order to im-
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prove the understanding of the latent variables. Nevertheless, their training does not
rely on any ground truth latent explanation. Symmetric autoencoders have also been
utilized to represent coherent information via reordering of the data [35], which can
certainly help to understand the underlying decisions of the machine.

Another option is to develop new algorithms that are more transparent by nature
and also high performing [36]. The main drawback is that such development im-
plies a bottom-up reformulation of the neural networks and the learning formulas of
the backpropagation. CEFYDRA is an example of these novel net-based algorithms
that, in its case, replaces the neural unit with a fuzzy inference system in order to
reason its outputs [37, 38, 39]. Combining case-based reasoning with deep learning
has made significant advances in XAI as well, where the networks leverage already
seen scenarios and adapt their solutions to solve new problems [40, 41, 42]. Other
researchers have considered adding constrains to the learning process [43, 44, 45]
but it has not been done with the intention of forcing the machine to think or repli-
cate human reasoning. On the other hand, there have also been attempts to improve
explainability by simulating human reasoning, but not within the neural network
itself [46].

2 Architecture

2.1 The ForcedNet

The growth of XAI has raised concerns about the quality of the explanations used
to explain the algorithms [47, 48, 49, 50]. Logically, an explanation is valid as long
as it’s understandable for the person who digests it. Therefore, its validity depends
on the recipient, which makes that assessment a highly subjective task. Regardless,
if we consider the explanations as one more feature of the dataset, we could even
integrate them into the training process, to educate the machine in a human manner.
Such human-like reasoning could possibly help opening the black box [51], [52],
[53].

In this work we introduce the concept of ForcedNet, a neural network that has
been ”forced” to produce a simplified version of a human-like explanation in one
of its intermediate layers and then leverages fully or partially this explanation to
generate the desired output. We define these simplified versions human-like expla-
nations as any type of information that can help understand the reasoning process
of the algorithm from the human perspective. The choice of the best explanation
format is problem specific, and even for one same task there might be several types
of useful explanations, such as visual or textual. As it was mentioned in the intro-
duction, the validity of an explanation is subjective since it involves the perception
and assessment of a human, which might vary.

Fig. 1 is the depiction of an example ForcedNet architecture. In addition to the
usual inputs and outputs, we also have the desired explanations, and the support
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Fig. 1 Schematic representation of the proposed network, ForcedNet, composed of a central ex-
planation layer that contains the human-understandable explanation and the support features.

features (whose purpose will be described later) in what we identify as the explana-
tion layer of the network. This layer divides the left and right sections which are the
reasoning and inference sections, respectively.

The reasoning section is responsible for producing the explanation of the input.
This explanation should be a description that not only encodes the information of
the input but at the same time is understandable from the human perspective. The
inference section is responsible for generating the desired output from the human-
understandable explanation.

Generating the final output using only the information encoded in the explanation
might be a difficult task. Indeed, the performance of the inference section depends
on the quality of the explanation chosen for the problem. For that matter, we in-
troduce the concept of support features, which precisely support the explanation
features encapsulating additional information of the input that is not present in the
explanation. These features are not understandable from the human perspective as
the explanation features, but in some problems might be necessary. To grasp their
importance, let us consider the following image reconstruction task depicted in Fig.
2, where xxx, and yyy denote the input and output respectively. The explanation chosen,
ttt, is a short linguistic description of the image. The support vector (support features
arranged in a vector format), sss, has S features that have no apparent meaning, but to-
gether with the embedded explanation, the inference section is able to retrieve most
of the image. In Fig. 2, v̂vv denotes a prediction of the variable vvv.

The training of such a system can leverage a triple backpropation method, where
in each step we train the reasoning section, the inference section, and the full system
separately as shown in Fig. 3. Note that the backpropagation in the reasoning and
the inference sections excludes the weights associated to the neurons of the support
vector because we have no prior data for these features.
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Fig. 2 Two examples of a ForcedNet that uses the image embedding as the explanation and per-
forms the image reconstruction task based on this textual definition of the image. Images publicly
available at Flickr [54]. This example is schematic and only serves to understand better the idea
behind a ForcedNet.
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Fig. 3 Schematic representation of the triple backpropagation method for the training of a Forced-
Net, given a single explanation layer.

2.2 Design Considerations

Choosing the best number of support features should be evaluated carefully and is
problem specific. There is an optimal trade-off between explainability (low S) and
performance (high S). Alternatively, one can study the evolution in performance of
the following two pipelines as we vary the value of S to make a better decision:

• Network A, which uses the explanation of T fixed number of features and S
support features, i.e., a total of T +S hidden features.

• Network B, which only uses S hidden features, and it does not produce any ex-
planation.

Fixing the same training hyperparameters, we increase the value of S in both
networks and keep track of their performance, which we denote by ρA and ρB re-
spectively (same figure of merit must be the chosen, e.g., for regression tasks: Root
Mean Squared Error, or Mean Absolute Error, etc.). When the ρA ≈ ρB for a given
value S, it means that network A is not using the explanation features to produce the
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Fig. 4 Performance comparison for two different networks as we increase the value of S while we
fix the value of T . Network A is a ForcedNet that utilizes T explanation features together with S
support features. Network B is a standard autoencoder that uses S hidden features.

outputs. We denote this limiting value of S with Smax (Fig. 4). In other words, the
network A has sufficient information with the Smax support features to fulfill its task,
since network B has been able to obtain similar performance without the use of the
F features. Thus, the explanations generated by A are meaningless because pipeline
A may not be using them at all. The optimal value S, is Sopt ∈ Z+ : 0 ⩽ Sopt < Smax,
which marks the trade-off between performance and explainability, because it en-
sures that the explanation features are indeed used in the reasoning to generate the
output.

3 Case Study

We chose the image reconstruction task to exemplify a simple proof of concept of
a ForcedNet. To generate the intermediate explanations, we decided to leverage the
saliency map (mmm) of the image, which defines the regions of the image on which the
human eye focuses first. Our explanation is composed of both the original image
and the saliency map. We injected Gaussian noise and increased the transparency
proportionally to those pixels that were less important according to the saliency
map, while we kept resolved those areas that were more relevant. In other words, in
the explanation we tried to capture the way in which the human eye focuses on an
image, distorting the surrounding information while locating the machine’s center
of attention on the vital pixels.

For the reasoning section of the network, we utilized DeepGaze II [55], a pre-
trained model that has demonstrated the best performance to date predicting saliency
maps on datasets like MIT300 saliency benchmark [56], where it reported the fol-
lowing metrics: AUC = 88%, sAUC = 77%, NSS = 2.34. DeepGaze II was trained
in two phases. In its pre-training phase it used the SALICON dataset [57], which
consists of 10000 images with pseudofixations from a mouse-contingent task, and
was fine-tunned using the MIT1003 dataset [58].
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Fig. 5 Processing pipeline of the image reconstruction task fully based on the human-like attention
map (the explanation).

Because we are using a pre-trained model for the reasoning section we cannot
consider the use of support features. However, the scope of this research was simply
to introduce the idea of ForcedNets and to illustrate a simple example with the re-
construction task chosen. In future work, we will study the effect of different support
features in a ForcedNet trained back-to-back.

For the inference section, we chose a shallow convolutional autoencoder. The
specifications of the architecture are shown in Table 1.

Table 1 Architecture of the convolutional autoencoder chosen.

Layer Filter Kernel Size Activation Function Padding Strides

Convolution 2D 16 3x3 ReLu Same 2
Convolution 2D 8 3x3 ReLu Same 2
Deconvolution 2D 8 3x3 ReLu Same 2
Deconvolution 2D 16 3x3 ReLu Same 2
Convolution 2D 3 3x3 Sigmoid Same 2

We chose a dataset of 1,000 RGB flower images of 128x128 pixels obtained from
Flickr [54]. This selection of images is publicly available in [59].

First, we predicted the feature map of all the images using DeepGaze II, and
then we obtained the composed image that served as the explanation matrix. We
then trained the convolutional autoencoder with the generated explanations and the
desired outputs. Fig. 5 shows the different steps of the architecture.

For the training of the inference section, we chose a learning rate of 10−4 for
3,000 epochs with 20 steps each. We used 0.7, 0.2, 0.1, training, validation and
testing splits.

Since the reasoning section of the ForcedNet was already trained we did not
require the triple backpropagation method. However, for future reference, the rea-
soning and the inference sections should be trained simultaneously so that both can
learn from all the three types of data (inputs, outputs, and explanations).
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Fig. 6 Eight training instances of the dataset. First row represents the original image, second row
the saliency map predicted by DeepGaze II, third row the composed attention map (the human-
like explanation), row four the output of the convolutional autoencoder (reconstructed image), row
five the difference image between the input and the output of the system in normalized space to
appreciate better the errors.

Additionally, DeepGaze II required an additional reference image map that mea-
sured the human bias to look at pixels on the central region of the image. This map
was generated accordingly as described in [55] for the chosen dataset.

4 Results

After training, the Mean Absolute Error (MAE) for 10-fold cross validation was
0.0107, 0.0109, 0.0108 for each set, respectively. To calculate the MAE we used the
average error for all the pixels of the image.

Fig. 6 and Fig. 7 show some prediction examples for both the training and the
testing datasets of the ForcedNet considered. It can be appreciated that the convolu-
tional autoencoder is able to reconstruct most of the image using only the informa-
tion available on the explanation data. At the same time, the explanation layer gives
us that additional knowledge in the prediction of the areas in the image where the
machine focuses more.
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Fig. 7 Eight testing instances of the dataset. First row represents the original image, second row
the saliency map predicted by DeepGaze II, third row the composed attention map (the human-
like explanation), row four the output of the convolutional autoencoder (reconstructed image), row
five the difference image between the input and the output of the system in normalized space to
appreciate better the errors.

5 Discussion

With this study, we are trying to demonstrate that is viable to force the network to
have intermediate layers where we have explanations, and that there are different
but simple ways in which we can conceive simplified behaviors of human reasoning
that might even help the machine learning process.

Having the explainability requirement in the middle of the pipeline might in-
crease the difficulty of the learning process, as it imposes a constrain in the ma-
chine’s internal inference process. However, there might be scenarios where we see
the opposite, e.g., if the human description contains useful information for the task
chosen, it could even help the training guiding the weights to more optimal combi-
nations. On the other hand, it does require an extra effort from the human to generate
the dataset of explanation training instances.

The architecture explained in this study is scalable to designs with several ex-
plainable layers. In other words, one could stack different reasoning sections to-
gether to form a chain of explanations as shown in Fig. 8. That kind of pipeline
would guide the thought process of the network even more than the case studied.
The motivation behind such a system lies in validation and verification purposes
or simply because we decide to constrain the internal inference process of the net-
work in a smarter way than letting the optimization to brute force input-to-output
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Fig. 8 Schematic representation of a ForcedNet composed of several explanation layers. Each ex-
planation layer is generated by the corresponding reasoning section, but there is only one inference
section.

backpropagation. The number of backpropagation methods that one can perform si-
multaneously in each step given n explanation layers is n2+3n+2

2 , which comes from
the combinations of n+ 2 elements (n explanation layers and both the extremes of
the pipeline) grouped in pairs. Note that n2+3n will always generate a positive even
number if n ∈ Z+.

Future work could focus on demonstrating the use of ForcedNets in image recon-
struction leveraging the image embedding as the explanation. Further experiments
should also be conducted to test the benefit of support features and the optimal
choice of S.

The authors believe that the community would be benefited from an open-source
module for neural network development that could automate plugging explanations
in the middle of the network and choosing for the right number of support features.

6 Conclusions

We have presented the concept of ForcedNets as a tool to guide the learning of a
neural network to generate intermediate human-understandable explanations. This
technique has been demonstrated with a simple image reconstruction example where
the explanation is a composition image of the saliency map. The use of support
features has been discussed as a method to ensure high performance even when the
explanations are too simple or do not capture all the necessary information of the
previous layers. The authors believe that this technique could significantly help to
obtain the desired explainability in neural networks, as long as there are explanations
for the chosen problem and that these can be easily incorporated into the learning
process.
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