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Abstract. Noise resilience is a popular attribute among machine learning algo-

rithms. In regression problems, it refers to the ability to keep high performance 

even when the data is noisy. Surprisingly, there is no standard figure of merit to 

quantify it. This theoretical research leverages the variance of the residuals to 

determine objectively the performance of a regression algorithm in the presence 

of noisy data. The two main contributions of the paper are the locality condi-

tions of noise resilience and the noise resilience score, NR.   

Keywords: Approximation, Fuzzy AI, Noisy Data, Noise Resilience, Local 

Conditions of Noise Resilience, Global Noise Resilience Score 

1 Introduction 

The presence of noisy data can lead to overfitting in regression problems. Deciding 

the best approximation is not a trivial task; ultimately, the algorithm should find the 

pattern rather than fitting accurately the datapoints. In robotics for example, noise is 

frequently present due to the vibrations of the mechanical systems. For that matter, 

the classical control theory is often replaced by more flexible and realistic methods. 

Fuzzy logic has proven notable performance in this field, which in many cases, [1 - 

4], exhibits the property of noise resilience. 

Regression problems have several figures of merit to evaluate the accuracy of the 

predictions, [5 - 9]: Root Mean Squared Error (RMSE), Mean Average Error (MAE) 

or  Mean Absolute Percentage Error (MAPE) for example. Nevertheless, the general-

ized technique to evaluate noise resilience entails experimental testing. In fact, there 

is a lack of updated literature to quantify theoretically the noise resilience of a regres-

sion algorithm. Which is undoubtedly relevant, as many methods have claimed such 

property in the past decade: [10 - 16] for instance. In contrast, other branches of AI, 

such as associative memory and information retrieval problems, already have standard 

criteria to measure the amount of affordable noise.  

2 Research Objectives 

This paper provides a criteria to measure theoretically the noise resilience of a regres-

sion algorithm. With the growing interest in understanding noisy datasets, it becomes 
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more  prominent to obtain a technique that allows for the quantification of an approx-

imation’s resilience to noise. Such an evaluation method would provide higher credi-

bility to the techniques in question. Specifically, the realm of soft computing artificial 

intelligence could be substantially benefitted from it (which encompasses the toler-

ance of precision, partial truth, and uncertainty). 

In section 3.1 the framework of the problem is explained in detail, where the de-

velopment makes use of the locality hypothesis. This will later serve to find the 

boundaries that determine if an algorithm is resilient or not, within a given region of 

the domain. 3.2 contains the theoretical development of the local conditions and 

boundaries of noise resilience. It should be remarked that the property of noise resili-

ence is often associated to a maximum value of affordable corruption in the data, 

above which, the algorithm no longer provides a useful prediction. Thus, the men-

tioned boundaries must depend on the amount of noise present in the data. Finally, 

section 3.3 provides the definition of the 𝑁𝑅 metric. 

3 Methodology  

3.1 Framework 

The following development will be particularized for a one input one output case. For 

simplicity, the noise will be present only in the output variable. Note that if there was 

noise in the input features those inputs could be considered as true (as long as they 

belong to the domain of the dimension) and the noise would be transmitted to the 

output. In order to evaluate the impact of the noise, for each 𝑞 instance of the dataset 

(formed by a total of 𝑄 points), three important output variables will be studied; 𝑦̂𝑞, 

𝑦𝑞 , and 𝜇𝑞.  

The first variable, 𝑦̂𝑞, is the predicted output for a given input 𝑥𝑞. This will be the 

outcome generated by the algorithm. 

The second is the observation, 𝑦𝑞 , a real output obtained in the data acquisition 

process, which has a certain amount of noise. In other words, if the acquisition was 

carried out again for the same input, 𝑥𝑞, its value will most likely differ from the pre-

vious one, 𝑦𝑞
 

1 ≠ 𝑦𝑞
 

2 .  

The third variable, 𝜇𝑞, is the unknown ground truth. This can be seen as the aver-

age of all the possible output values obtained, for a given input  𝑥𝑞, when the number 

of tests, 𝐾, tends to infinity. 

𝜇𝑞 = lim
𝐾→∞

 
1

𝐾
∑ 𝑦𝑞

 
𝑘

𝐾

𝑘=1

 (1) 

In a real problem there is no access to this value, unless the noise is intentionally in-

troduced or there exists a tailored theoretical formulation for the system which repre-

sents accurately the reality. In the majority of the datasets that is not the case. The 

goal of this AI task is not only to correctly fit the data but also to infer the value of 𝜇𝑞 

as accurately as possible. Note that these are two very different things. Obviously, the 

system will train using only the information available, 𝑥𝑞 and 𝑦𝑞 , but it will never be 

exposed to 𝜇𝑞 (at least during the training). While the algorithm learns, it will gradu-
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ally minimize the difference between 𝑦̂𝑞 and 𝑦𝑞 , but 𝑦̂𝑞 should never match  𝑦𝑞 , un-

less 𝑦𝑞  is exactly 𝜇𝑞. Here resides one of the current biggest issues in AI, overtrain-

ing. If the training time is longer than the optimal, 𝑦̂𝑞 can suddenly start converging 

towards 𝑦𝑞 , creating unexpected shapes in the continuum of predictions. In the pres-

ence of noise, this is more likely to happen, which relates to the topic of the present 

research. Ultimately, 𝑦̂𝑞 should be an approximation of 𝜇𝑞, not of 𝑦𝑞 . 

In a regression problem of continuous variables, if the range of the inputs is infini-

tesimally small (𝑑𝑥) the curve converges to a linear function. This is a fundamental 

concept of calculus, which can  be seen in Fig. 1 (where a nonlinear function with a 

single input variable has been considered). 

 
Fig. 1. Representation of the aforementioned fundamental concept of calculus. 

 

This concept will serve as the basis of the hypothesis of locality: the truth (instances 

with no noise) and the prediction should both follow approximately a linear regres-

sion, provided that the range of the input variable considered is sufficiently small 

(Fig. 2). 

 
Fig. 2. Observations, predictions, and ground truth. 

, 

Observed Output with Noise
Prediction
True Output without Noise
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Thus, the prediction can be modeled as 

𝑦̂𝑞 ≈ 𝑚 𝑥𝑞 + 𝑛 (2) 

Where 𝑚 and 𝑛 are the slope and the intercept, respectively, of the closest linear re-

gression to the prediction function within ∆𝑥. To model the ground truth, the hypothe-

sis of locality (for a narrow ∆𝑥 range) is also considered. Thus, 𝜇𝑞 can be approxi-

mated to 

𝜇𝑞 ≈ 𝑚′ 𝑥𝑞 + 𝑛′ (3) 

Ideally both the prediction and the ground truth should follow the same equation, but 

in a general case, 𝑚′ and 𝑛′ are different from 𝑚 and 𝑛. To account for such differ-

ence, the residuals 𝜀𝑦
𝑞, 𝜀𝑦̂

𝑞 and 𝜆𝑞  are defined as 

𝜀𝑦
𝑞 = 𝑦𝑞 − 𝜇𝑞 (4) 

𝜀𝑦̂
𝑞 = 𝑦̂𝑞 − 𝜇𝑞 (5) 

𝜆𝑞 = 𝑦𝑞 − 𝑦̂𝑞 = 𝜀𝑦
𝑞 − 𝜀𝑦̂

𝑞 (6) 

The expression of 𝜀𝑦̂
𝑞 can be further developed,  

𝜀𝑦̂
𝑞 = 𝑦̂𝑞 − 𝜇𝑞 = 𝑚 𝑥𝑞 + 𝑛𝑖 − 𝑚′𝑥𝑞 − 𝑛′ = (𝑚 − 𝑚′)𝑥𝑞 + (𝑛 − 𝑛′) (7) 

Which means that it also follows the equation of a line 

𝜀𝑦̂
𝑞 = 𝛼 𝑥𝑞 + 𝛽 (8) 

The representation of these residuals has been incorporated in Fig. 3. 

 

 
Fig. 3. Observations, predictions, ground truth and residuals. 

Where 𝛼 can be obtained by comparing the first and last points of the range studied, 

, 

Observed Output with Noise
Prediction
True Output without Noise

: -

: -

: -
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𝛼 = 𝑚 − 𝑚′ =
𝑦̂𝑓 − 𝑦̂0

𝑥𝑓 − 𝑥0
−

𝜇 𝑓 − 𝜇0

𝑥𝑓 − 𝑥0
=

𝑦̂𝑓 − 𝜇 𝑓 + 𝑦̂0 − 𝜇0

𝑥𝑓 − 𝑥0
=

𝜀𝑦̂
𝑓 − 𝜀𝑦̂

0

∆𝑥 
 (9) 

Note that there are data points that are closer to the ground truth than others. Those 

that have more noise, jeopardize the prediction, and those that have less, improve it. 

The goal is to define under what conditions the prediction is better than the real data 

when compared to the ground truth.  

 

3.2 Conditions of Noise Resilience 

The last statement of the previous section is the bottom line of this development. The 

question that follows is: under what conditions does a regression algorithm performs 

better than the noisy data when its outcomes are compared to the ground truth? 

To answer this, the mean and the variances of both residuals 𝜀𝑦
𝑞 and 𝜀𝑦̂

𝑞 will be 

compared. Since the prediction has been generated from the same instances, it is ex-

pected that the means will be the same, but the variances might not be equal. A favor-

able case would be when the variance of  𝜀𝑦̂
𝑞 is smaller than the variance of 𝜀𝑦

𝑞. That 

would imply that the slope of the function (8) is small. Obviously, the prediction 

would have less noise than the data itself. Thus, if there exists any particular instance 

whose confidence in the output is higher, then it could be used to further improve the 

prediction. In the event that there are several points with higher output confidence 

than the average, the compensation, Ɠ, can be calculated as the weighted mean of 

those. In such case, both the confidence value, 𝛾𝑞, and the distance to the center of the 

∆𝑥 range, 𝑥𝑐, should define the weights, 𝑤𝑞 . For example, the authors suggest the 

definition (10) for the compensation, where the weights range from 0 to 1. Let 𝑁 rep-

resent the number of datapoints that belong to the range considered, then 

Ɠ = ∑ 𝑤𝑞  𝜆𝑞

𝑁

𝑞=1

= ∑
(𝛾𝑞 − 𝛾𝑚𝑖𝑛)

(𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛)(1 + abs(𝑥c − 𝑥𝑞))
 𝜆𝑞

𝑁

𝑞=1

 (10) 

To retake the development, the first step is the calculation of the means. The mean 

value of 𝜀𝑦
𝑞 is 

𝜀𝑦̅ =
1

𝑁
∑ 𝜀𝑦

𝑞

𝑁

𝑞=1

=
1

𝑁
∑(

𝑁

𝑞=1

𝑦𝑞 − 𝜇𝑞) =  
1

𝑁
∑ 𝑦𝑞

𝑁

𝑞=1

−
1

𝑁
∑ 𝜇𝑞

𝑁

𝑞=1

= 𝑦̅ − 𝜇̅ (11) 

Similarly, the mean value of 𝜀𝑦̂
𝑞 

𝜀𝑦̂̅ =
1

𝑁
∑ 𝜀𝑦̂

𝑞

𝑁

𝑞=1

=
1

𝑁
∑(

𝑁

𝑞=1

𝑦̂𝑞 − 𝜇𝑞) =  
1

𝑁
∑ 𝑦̂𝑞

𝑁

𝑞=1

−
1

𝑁
∑ 𝜇𝑞

𝑁

𝑞=1

= ⋯ 

=
1

𝑁
∑(𝑚 𝑥𝑞 + 𝑛)

𝑁

𝑞=1

− 𝜇̅ = 𝑦̅̂ − 𝜇̅ 

(12) 

The mean of the predictions, 𝑦̅̂, can be obtained considering the input feature 𝑥, and 

its mean 𝑥̅, 
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𝑦̅̂ = 𝑚
1

𝑁
∑ 𝑥𝑞

𝑁

𝑞=1

+ 𝑛
1

𝑁
∑ 1

𝑁

𝑞=1

= 𝑚𝑥̅ + 𝑛 (13) 

(14) holds for a linear regression, and for a generic approximator it should also be a 

fair representation of the reality. 

𝑚𝑥̅ + 𝑛 = 𝑦̅ (14) 

𝑦̅ = 𝑦̅̂ (15) 

Thus, the final value of the 𝜀𝑦̂̅ residual is 

𝜀𝑦̂̅ = 𝑦̅ − 𝜇̅ (16) 

From (11) and (16) can be seen that 𝜀𝑦̅ and 𝜀𝑦̂̅ are equal, as expected. 

𝜀𝑦̅ = 𝜀𝑦̂̅ (17) 

Now, the calculation of the variances follows, they will be represented by 𝑠. Since the 

preliminary development is the same for both 𝜀𝑦 and 𝜀𝑦̂, the generic symbol 𝜀 will be 

used instead.  

𝑠𝜀 =
1

𝑁 − 1
∑(𝜀𝑞 − 𝜀)̅2

𝑁

𝑞=1

=
1

𝑁 − 1
∑ 𝜀𝑞 2

𝑁

𝑞=1

−
2

𝑁 − 1
∑ 𝜀𝑞  𝜀 ̅

𝑁

𝑞=1

+
1

𝑁 − 1
∑ 𝜀 ̅2

𝑁

𝑞=1

= ⋯ 

=
1

𝑁 − 1
∑ 𝜀𝑞 2

𝑁

𝑞=1

−
2 𝜀̅

𝑁 − 1
∑ 𝜀𝑞

𝑁

𝑞=1

+
𝑁

𝑁 − 1
𝜀 ̅2 

(18) 

Simplifying, 

𝑠𝜀

𝑁 − 1

𝑁
=

1

𝑁
∑ 𝜀 𝑞 2

𝑁

𝑞=1

−
2 𝜀𝑦̅

𝑁
∑ 𝜀 𝑞

𝑁

𝑞=1

+ 𝜀 ̅2 =
1

𝑁
∑ 𝜀𝑦

𝑞 2

𝑁

𝑞=1

− 2𝜀 ̅2 + 𝜀 ̅2 = ⋯ 

=
1

𝑁
∑ 𝜀𝑞 2

𝑁

𝑞=1

− 𝜀 ̅2 

(19) 

Let 𝜑 be the factor 
𝑁−1

𝑁
, 

𝜑 𝑠𝜀 =
1

𝑁
∑ 𝜀𝑞 2

𝑁

𝑞=1

− 𝜀 ̅2 (20) 

Particularizing for 𝜀𝑦 and 𝜀𝑦̂, 

𝜑 𝑠𝜀𝑦
=

1

𝑁
∑ 𝜀𝑦

𝑞 2

𝑁

𝑞=1

−  𝜀𝑦̅
2 =

1

𝑁
∑(𝑦𝑞 − 𝜇𝑞)2

𝑁

𝑞=1

−  𝜀𝑦̅
2 (21) 

and 

𝜑 𝑠𝜀𝑦̂
=

1

𝑁
∑ 𝜀𝑦̂

𝑞 2

𝑁

𝑞=1

−  𝜀𝑦̂̅
2 =

1

𝑁
∑(𝑦̂𝑞 − 𝜇𝑞)2

𝑁

𝑞=1

−  𝜀𝑦̂̅
2 (22) 

As stated, the goal is to prove that 

𝑠𝜀𝑦̂
≤ 𝑠𝜀𝑦

 (23) 
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Considering 𝜆𝑞 , 

𝜑 𝑠𝜀𝑦
=

1

𝑁
∑(𝑦̂𝑞 − 𝜇𝑞 + 𝜆𝑞)2

𝑁

𝑞=1

−  𝜀𝑦̅
2 = ⋯ 

=
1

𝑁
∑(𝑦̂𝑞 − 𝜇𝑞)2

𝑁

𝑞=1

+
2

𝑁
∑(𝑦̂𝑞 − 𝜇𝑞)

𝑁

𝑞=1

𝜆𝑞 +
1

𝑁
∑ 𝜆𝑞 2

𝑁

𝑞=1

−  𝜀𝑦̅
2 

(24) 

The first and last terms can be grouped using (22), 

𝜑 𝑠𝜀𝑦 = 𝜑 𝑠𝜀𝑦̂
+

2

𝑁
∑(𝑦̂𝑞 − 𝜇𝑞)

𝑁

𝑞=1

𝜆𝑞 +
1

𝑁
∑ 𝜆𝑞 2

𝑁

𝑞=1

= ⋯ 

= 𝜑 𝑠𝜀𝑦̂
+

2

𝑁
∑ 𝜀𝑦̂

𝑞

𝑁

𝑞=1

𝜆𝑞 +
1

𝑁
∑ 𝜆𝑞 2

𝑁

𝑞=1

 
(25) 

If the equation (8) is incorporated,  

𝜑 𝑠𝜀𝑦 = 𝜑 𝑠𝜀𝑦̂
+

2

𝑁
∑(𝛼 𝑥𝑞 + 𝛽)

𝑁

𝑞=1

𝜆𝑞 +
1

𝑁
∑ 𝜆𝑞 2

𝑁

𝑞=1

= ⋯ 

= 𝜑 𝑠𝜀𝑦̂
+ 𝛼

2

𝑁
∑  𝑥𝑞

𝑁

𝑞=1

𝜆𝑞 + 𝛽
2

𝑁
∑ 𝜆𝑞

𝑁

𝑞=1

+
1

𝑁
∑ 𝜆𝑞 2

𝑁

𝑞=1

 
(26) 

Let the last term be calculated separately, 

1

𝑁
∑ 𝜆𝑞

𝑁

𝑞=1

=
1

𝑁
∑(𝑦𝑞 − 𝑦̂𝑞)

𝑁

𝑞=1

=
1

𝑁
∑ 𝑦𝑞

𝑁

𝑞=1

−
1

𝑁
∑ 𝑦̂𝑞

𝑁

𝑞=1

= 𝑦̅ − 𝑦̅̂ = 0 (27) 

Thus 𝛽 has no influence in the prove of 𝑠𝜀𝑦̂
≤ 𝑠𝜀𝑦

, 

𝜑 𝑠𝜀𝑦
= 𝜑 𝑠𝜀𝑦̂

+ 𝛼
2

𝑁
∑  𝑥𝑞

𝑁

𝑞=1

𝜆𝑞 +
1

𝑁
∑ 𝜆𝑞 2

𝑁

𝑞=1

 (28) 

The relation 𝑠𝜀𝑦̂
≤ 𝑠𝜀𝑦

 𝑖s the same as 𝜑 𝑠𝜀𝑦̂
≤ 𝜑 𝑠𝜀𝑦

 as long as 𝜑 ≥ 0 (which in this 

case is). Thus, as long as 

𝛼
2

𝑁
∑  𝑥𝑞

𝑁

𝑞=1

𝜆𝑞 +
1

𝑁
∑ 𝜆𝑞 2

𝑁

𝑞=1

≥ 0 (29) 

then 𝑠𝜀𝑦̂
≤ 𝑠𝜀𝑦

 holds. The second term is always positive, but the first can be negative 

(it might alternate for each datapoint). In the end, what determines the veracity of the 

expression (29) is the slope of the difference of 𝑦̂ and 𝜇, that is, 𝛼: 

2 𝛼 ∑  𝑥𝑞

𝑁

𝑞=1

𝜆𝑞 + ∑ 𝜆𝑞 2

𝑁

𝑞=1

≥ 0 (30) 

Using the final values of the series, 𝑆1 and 𝑆2, 

2 𝛼 𝑆1 + 𝑆2 ≥ 0 (31) 
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𝛼 𝑆1 ≥ −
𝑆2

2
 (32) 

Table 1 shows all the possible scenarios, 

Table 1. Possible scenarios. 

𝛼 𝑆1 Constrain for 𝑠𝜀𝑦̂
≤ 𝑠𝜀𝑦

 

≥ 0 ≥ 0 ∀ 𝛼 ≥ 0 

≥ 0 ≤ 0 𝛼 ≤ −
𝑆2

2 𝑆1

   →   𝛼 ≤
𝑆2

2 |𝑆1| 
 

≤ 0 ≥ 0 
𝛼 ≥ −

𝑆2

2 𝑆1

 

≤ 0 ≤ 0 ∀ 𝛼 ≤ 0 

 

The variable 𝐵 is used to group these boundaries, 

𝐵 =
𝑆2

2 |𝑆1| 
=

∑ 𝜆𝑞 2𝑁
𝑞=1

2 |∑  𝑥𝑞𝑁
𝑞=1 𝜆𝑞| 

=
∑ (𝑦𝑞 − 𝑦̂𝑞 )2𝑁

𝑞=1

2 |∑  𝑥𝑞𝑁
𝑞=1 (𝑦𝑞 − 𝑦̂𝑞 )| 

 (33) 

Thus, the conditions of noise resilience, using the hypothesis of locality, can be ex-

pressed as 

{
  −𝐵 ≤ 𝛼 ≤ 𝐵         𝑖𝑓  sgn(𝛼) ≠ sgn(𝑆1)

             ∀ 𝛼                𝑖𝑓  sgn(𝛼) = sgn(𝑆1)
 (34) 

It should be reminded that the parameters 𝛼 and 𝛽 represent the amount of noise that 

is still present after doing the prediction. It has been shown that 𝛼 has a direct influ-

ence in the variance of the distribution, and 𝛽 can be understood as an offset which 

has no impact in 𝑠𝜀𝑦̂
. This offset can be compensated when 𝛼 satisfies the conditions 

of noise resilience, which may result in further improvement of the approximation. 

Finally, from the intersection of (34), it follows that as long as 𝛼 is bounded between 

−𝐵  and 𝐵 (i.e., as long as the noise is bounded between these two values), the ex-

pression 𝑠𝜀𝑦̂
≤ 𝑠𝜀𝑦

 always holds. 

 

3.3 NR, Global Noise Resilience Score 

In this final section, the authors suggest a figure of merit to quantitatively determine 

the resilience to noise of a given approximator. This would consider both 𝑠𝜀𝑦̂
 and 𝑠𝜀𝑦

. 

Previously the objective was to provide under what circumstances the prediction was 

better than the noisy data. This next task should focus on the calculation of an accu-

mulated measurement of resiliency. In fact, that figure could be simply the difference 

between 𝑠𝜀𝑦
 and 𝑠𝜀𝑦̂

. Let (28) be retaken, then, 
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 𝑠𝜀𝑦 =  𝑠𝜀𝑦̂
+ 𝛼

2

𝑁 𝜑
∑  𝑥𝑞

𝑁

𝑞=1

𝜆𝑞 +
1

𝑁 𝜑
∑ 𝜆𝑞 2

𝑁

𝑞=1

 (35) 

𝑠𝜀𝑦
− 𝑠𝜀𝑦̂

= 𝛼 
2 

𝑁 − 1
∑  𝑥𝑞

𝑁

𝑞=1

𝜆𝑞 +
1

𝑁 − 1
∑ 𝜆𝑞 2

𝑁

𝑞=1

 (36) 

Let the dataset have a total of 𝐽 different regions that can be approximated linearly, 

and let 𝑁𝑅 be the noise resilience score (the metric suggested).  

𝑁𝑅 =
1

𝐽
 ∑

𝑠𝜀𝑦𝑗
−  𝑠𝜀𝑦̂ 𝑗

𝑠𝜀𝑦𝑗

𝐽

𝑗=1

 (37) 

Each 𝑗th region would have different values of 𝑠𝜀𝑦𝑗
, 𝑠𝜀𝑦̂ 𝑗

, 𝑁𝑗 and 𝛼𝑗, thus, 

𝑁𝑅 =
1

𝐽
∑

1

𝑠𝜀𝑦𝑗

 

𝐽

𝑗=1

1

𝑁𝑗 − 1
( 2 𝛼𝑗 ∑  𝑥𝑞

𝑁𝑗

𝑞=1

𝜆𝑞 + ∑ 𝜆𝑞 2

𝑁𝑗

𝑞=1

) (38) 

 

From (21), 

 𝑠𝜀𝑦𝑗
=

1

𝑁𝑗 − 1
∑ 𝜀𝑦

𝑞 2

𝑁𝑗

𝑞=1

−
𝑁𝑗

𝑁𝑗 − 1
 𝜀𝑦̅𝑗

2 (39) 

𝑁𝑅 =
1

𝐽
∑

 2 𝛼𝑗 ∑  𝑥𝑞𝑁𝑗

𝑞=1
𝜆𝑞 + ∑ 𝜆𝑞 2𝑁𝑗

𝑞=1

∑ 𝜀𝑦
𝑞 2

𝑁𝑗

𝑞=1
− 𝑁𝑗 𝜀̅𝑦𝑗

2

𝐽

𝑗=1

 (40) 

The resilience score ranges from (−∞, 1]. For a given amount of noise, a value of 1 in 

𝑁𝑅 would mean that the approximator has pure noise resilience. A case in which for 

all the regions, the variance 𝑠𝜀𝑦̂𝑗
 is null. 

The partitioning of the domain was done such that the truth of each small region 

could be approximated by a linear function, where each datapoint is only considered 

once. Nevertheless, the score could be further improved with non-exclusive regions of 

datapoints, using a sliding window of variable width for example (if the input is one-

dimensional). This way, each point would be considered multiple times, while the 𝑁𝑅 

would still be defined by (40). 

4 Conclusion 

This development can serve as a possible method to measure noise resilience in re-

gression algorithms. It might as well be useful to quantify overtraining, although a 

specific figure of merit should be developed for that phenomenon. 
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Future work should also focus on the generalization of the conditions of noise resili-

ence and the resilience score to multidimensional problems. Additionally, the applica-

tion of 𝑁𝑅 is encouraged as a metric to quantify and compare objectively the perfor-

mance in the presence of noise. Finally, Table 2 shows the definition and attributes of 

some of the popular metrics in regression together with the score presented in this 

research. 

Table 2. Overview of popular metrics and the attributes they evaluate from the re-

gression algorithm, together with the proposed 𝑁𝑅 score. 

Metric Definition Attribute 

𝑀𝑆𝐸 
1

𝑄
∑(𝑦𝑞 − 𝑦̂𝑞)2

𝑄

𝑞=1

 
Accuracy 

• Penalizes large errors 

𝑅𝑀𝑆𝐸 √
1

𝑄
∑(𝑦𝑞 − 𝑦̂𝑞)2

𝑄

𝑞=1

 

Accuracy 

• Same information as the 

𝑀𝑆𝐸 

𝑀𝐴𝐸 
1

𝑄
∑|𝑦𝑞 − 𝑦̂𝑞|

𝑄

𝑞=1

 

Accuracy 

• Penalizes overprediction 

𝑀𝐴𝑃𝐸 
100%

𝑄
∑ |

𝑦𝑞 − 𝑦̂𝑞

𝑦𝑞 |

𝑄

𝑞=1

 

Accuracy 

• Same info as MAE in 
percentage 

𝑆𝑀𝐴𝑃𝐸 
100%

𝑄
∑ 2

 |𝑦𝑞 − 𝑦̂𝑞|

|𝑦𝑞| + |𝑦̂𝑞|

𝑄

𝑞=1

 
Accuracy 

𝑅2 1 −
∑ (𝑦𝑞 − 𝑦̂𝑞)2𝑄

𝑞=1

∑ (𝑦𝑞 − 𝑦̅)2𝑄
𝑞=1

 

Accuracy 

• Per unit explained variation 

𝑀𝐸 
1

𝑄
∑ 𝑦𝑞 − 𝑦̂𝑞

𝑄

𝑞=1

 
Bias 

𝑀𝑃𝐸 
100%

𝑄
∑

𝑦𝑞 − 𝑦̂𝑞

𝑦𝑞

𝑄

𝑞=1

 

Bias 
• Same info as ME in 

percentage 

• Penalizes overprediction 

𝑁𝑅 
1

𝐽
∑

 2 𝛼𝑗 ∑  𝑥𝑞𝑁𝑗

𝑞=1 𝜆𝑞 + ∑ 𝜆𝑞 2𝑁𝑗

𝑞=1

∑ 𝜀𝑦
𝑞 2𝑁𝑗

𝑞=1 − 𝑁𝑗  𝜀𝑦̅𝑗

2

𝐽

𝑗=1

 Noise Resilience 
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