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ABSTRACT 1 
We present an algorithm for the prediction of the incoming passengers at the airport’s security 2 
checkpoint with a resolution of 15 minutes for the next 2 weeks from the day of the prediction. This 3 
is characterized not only for its performance but also from its explainability in the outcomes. The 4 
algorithm has been integrated successfully at CVG airport for daily passenger predictions, which 5 
ultimately equipped the airport managers with information to perform a data driven deployment of 6 
the necessary airport resources. These include from tailored TSA officer schedules and staff allocation 7 
to surveillance and supervision tasks. Some of the indirect consequences of this technology are the 8 
congestion avoidance, the improvement of overall security at the airport facilities, the reduction of 9 
the waiting times, and the enhancement of the passenger experience. 10 
 11 
Keywords: Airport Security, Forecast, Explainable AI, Fuzzy Logic, Machine Learning, 12 
Passenger Flow 13 
 14 
  15 
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PASSENGER FLOW PREDICTION AT AIRPORTS 1 
Analyzing millions of data points airport operators and government agencies seek to predict 2 

passenger arrival times allowing for schedule optimization utilizing real-time data. This promotes an 3 
improved airport experience for staff and passengers, minimizing queues and increasing the overall 4 
safety of the airport avoiding congestions. 5 
Perhaps one of the added challenges of the passenger forecast problem is the fact that the arrivals of 6 
passengers to the airport are actually stochastic discrete events. Several researchers have carried out 7 
discrete event simulations to model passenger flows in the airport terminals (1-6). 8 
The passenger flow prediction has been long studied in the past, even in other public access 9 
transportations like subways or ground vehicles. Monmousseau et al. 2020 (7) investigated the 10 
passenger flow prediction at Paris Charles De Gaulle airport security checkpoints using Long Short-11 
Term Memory neural networks. As it could be expected, NN’s have been applied in this field as well, 12 
also considering hybrid DL algorithms with stacked autoencoders (SAE-DNN) (8). Xie et al. 2014 13 
(9) studied a seasonal decomposition and least squares support vector regression (LSSVR) for Short-14 
term forecasting of air passengers. Liu et al 2017 (10) leveraged real data of the Sanya Airport from 15 
2008 to 2016 for the same task using a Holt-Winter Seasonal Model combined with a linear 16 
regression.  17 
The excellent performance of DNNs, however, relies on opaque abstractions of the often hundreds of 18 
hidden layers and millions of parameters that obscure their decision-making process. This leads to 19 
the development of black box models with insufficient clarity on how they work. In that regard, the 20 
passenger flow prediction problem requires modified machine learning techniques that learn 21 
explainable features while maintaining performance, as well as more interpretable, structured causal 22 
models. This becomes more evident with the appearance of recent global AI legislations such as the 23 
European General Data Protection Regulation (11) that advocates for interpretability over accuracy 24 
and is triggering multi-million-dollar lawsuits against countless organizations (12-13). 25 
To address this issue, DARPA launched its explainable artificial intelligence (XAI) program in May 26 
2017 (originally proposed in August 2016), (14). DARPA defines explainable AI as AI systems that 27 
can explain their rationale to a human user, characterize their strengths and weaknesses, and convey 28 
an understanding of how they will behave in the future (15). 29 
A complex use case that requires explainable architectures for supervision, which is also characterized 30 
by its randomness in the data, is the arriving-passengers flow prediction at big public airports. We 31 
will be tackling this problem with the explainable, noise-resilient algorithm developed in this 32 
research. Indeed, having an accurate prediction of the passengers at the airport is highly valuable, 33 
with implications for the entire flight ecosystem of the hub. 34 
 35 
FRAMEWORK OF THE PROBLEM 36 

The main objective is to improve passenger experience and decision-making at the airport. 37 
To achieve this, we are focused on the prediction of the exact time at which the passengers enter the 38 
airport, their flight and profile information. This forecast will allow us to perform a smart allocation 39 
of the resources in the complex, from the opening of more lines at the security check in desks (as well 40 
as custom working schedules for the officers) to tailored advertisements. 41 
We focused on the passenger flow prediction two weeks in advance with a resolution of 15 minutes. 42 
Success has been defined according to specific figures of merit by CVG, which will be covered in the 43 
methodology. 44 
The terrible pandemic that we have experienced since the beginning of 2020 has had a great impact 45 
on the commercial aviation sector. The multiple movement restrictions and the fear of contagion from 46 
the COVID-19 virus or its variants have significantly reduced air traffic. Figure 1 represents the 47 
annual passengers per capita of each state both in 2019 and 2020. 48 
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 1 

Figure 1. Annual passengers per capita of each state of the Contiguous U.S. in 2019 – 2020. 2 

The data for the plot of Figure 1 has been obtained from the Bureau of Transportation Statistics (16-3 
17). It can be seen how the majority of the states have less than 1 passenger per capita in 2020, while 4 
in 2019 the situation was the opposite.  5 
U.S. airlines carried 557 million less passengers in 2020 than in 2019 (60% reduction from 2019 to 6 
2020). Indeed, passenger traffic in 2020 was the lowest on U.S. airlines since the mid-1980s (17). 7 
Because of the fluctuations in passenger flow values, along with low numbers registered during the 8 
pandemic, we focused our predictions using pre-pandemic or post-pandemic data. However, the 9 
algorithm presented in this section will take into account the dynamic nature of the passenger flow 10 
behavior, primarily in two different ways: 11 

• Weighting accordingly the most recent data of the airport, the information from the past few 12 
weeks. 13 

• Incorporating the seasonality throughout the year. 14 

In fact, the seasonality of this time-dependent problem is certainly a component that must be 15 
considered in the elaboration of a predictor for the passenger arrival. An example of this is covered 16 
by Li et al 2017 (18), who proposed a seasonal autoregressive integrated moving average method 17 
called SARIMA tailored particularly to Kunming Changshui International Airport. 18 
In Figure 2, we can see the seasonality and the yearly increase of the passenger numbers in the U.S. 19 
for the pre-pandemic decade, this data was also obtained from the US Bureau of Transportation 20 
Statistics. As expected, the summer months June, July and August are the ones with highest records, 21 
while January and February are the seasons with least passengers. 22 
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Figure 2. Monthly evolution of the total number of passengers between 2011 and 2019 (pre-pandemic 2 
years) in the United States. The seasonal nature of the time series can also be inferred from this plot. 3 

Figure 3 and Figure 4 show additional statistics for the last two pre-pandemic years concerning both 4 
domestic and international flights. We can see that the number of passengers in the U.S. is of the 5 
order of 10!. Not surprisingly, civil aviation is making more than a trillion dollar in the U.S. 6 
contributing significantly to the GDP (19). Figure 4 provides a breakdown of the top 10 carriers in 7 
the U.S. using the total number of passengers considering enplaned scheduled systemwide flights. 8 
Southwest, Delta, American and United airlines represent the vast majority of the passengers. In the 9 
light of these figures, the selected problem is of utmost relevance. An accurate passenger prediction 10 
can result in a multi-million-dollar revenue not only for airports and management authorities but also 11 
for the airlines and all the stakeholders in the commercial aviation. 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
Figure 3. Evolution between 2018 and 2019 (last two pre-pandemic years) of passengers, flights, 28 
revenue, and available seat miles (ASM, a measure of an airplane's carrying capacity available to 29 
generate revenue) for scheduled systemwide flights (domestic and international). 30 
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 18 
Figure 4. Passenger numbers in millions for the top 10 airlines considering enplaned scheduled 19 
systemwide flights (domestic and international flights) in 2018 and 2019 (last two pre-pandemic 20 
years). 21 
 22 
CVG HARDWARE 23 

CVG Airport Innovation has created a hardware tool to read the non-identifiable information 24 
of the passengers’ boarding pass at the security checkpoint. The scanners were developed in a joint 25 
partnership with DESKO, a company that has been providing airport barcode reading and document 26 
scanning and self-service solutions for more than 30 years. Particularly, the scanners are part of the 27 
DESKO PENTA OEM product line (Figure 5). 28 

 29 
Figure 5. Scanners developed by DESKO for airport barcode reading of non-personal identifiable 30 
data. Courtesy of CVG Airport Innovation Office.  31 

CVG Airport has been conducting research and analysis through live deployments of this technology 32 
since June 2019 with increasing success. This solution has been used to support other TSA initiatives 33 
in 3 other airports (BOS, DCA, TPA) and has proven invaluable in maintaining the fidelity of 34 
actionable data in high volumes. 35 
The reality in an airport environment is that: 36 

• passenger behavior is dynamic, and 37 
• micro adjustments at scale can lead to consistent delivery of security mission. 38 

Thus, thanks to this technology, coupled with the algorithm that we present in this paper, CVG will 39 
be able to: 40 
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• respond to the current environment and to assist with situational awareness and planning 1 
using real-time data, and 2 

• have a complete airport consciousness for proactive security responses. 3 
These scanners are owned by the airport, but they are located next to the TSA identity screening 4 
counter, at the security checkpoint (Figure 6). 5 

 6 
Figure 6. Security checkpoint at the entrance of Cincinnati/Northern Kentucky International Airport. 7 
Scanning technology already installed at the airport that is recording the non-identifiable passenger 8 
information for prediction of passenger flow. Courtesy of CVG Airport Innovation Office.  9 
Thanks to the added benefit that passenger predictions can generate, TSA has recognized, accepted, 10 
and helped in this initiative. Indeed, an accurate flow prediction will ultimately provide managing 11 
TSA representatives with an invaluable data-driven decision making. 12 

THE DATA 13 
 14 
Inputs 15 
The CVG Airport will provide the data required for this project. There are four main sources of input 16 
data for the current stage of the project: 17 

• The departing flight schedules at the airport (data publicly available). 18 
• The scans of the boarding passes at the security checkpoint (data not publicly available). 19 
• Data to extract the seasonality: Total number of passengers of every day throughout the year 20 

at the airport (data publicly available). 21 
• Average waiting time at the line of the security checkpoint (data not publicly available). 22 

This data shall be sufficient for prediction of the passenger flow at the security checkpoint. In order 23 
to improve the prediction, we will incorporate at a future stage other sources of information, such that 24 
the weather forecast, the current traffic (presence of congestions), presence of community events and 25 
other external information to the airport. This will be carried out at a later phase of the project. 26 

The departing flight schedules 27 
This data should be tabulated with the following features: Hub time (local time at CVG), 28 
destination (with the 3 IATA letter code), market airline, flight number, equipment (vehicle), 29 
and total number of seats. The number of bookings for that particular flight is often not 30 
available until close to the fight departure time, sometimes even after the departure. Thus, we 31 
will not consider it as an input for our predictions, because some airports might not have this 32 
information and we want to make a tool that is generalizable for all the U.S. public airports. 33 
Table 1 shows a small sample of how the flight schedule of a given day might look like, 34 
particularly the data displayed is for the morning of April 29th 2021 at CVG. 35 
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Table 1. Example of a morning flight schedule, schedule shown for April 29th, 2021, at CVG 1 
Airport (sample of 10 flights). Courtesy of CVG Airport Innovation Office.  2 

Hub 
Time 

Destination 
Market 
Airline 

Flight Equip. Seats 

0600 DTW : Detroit, MI, US DL 5027 CR7 69 
0600 ATL : Atlanta, GA, US DL 1626 739 180 
0600 DFW : Dallas/Fort Worth, TX, US AA 4137 E75 76 
0600 LGA : New York-La Guardia, NY, US DL 4852 CR9 70 
0610 BWI : Baltimore, MD, US WN 909 73W 143 
0613 PHL : Philadelphia, PA, US AA 5417 CR9 76 
0613 MCO : Orlando, FL, US DL 1763 738 160 
0630 ORD : Chicago-O'Hare, IL, US AA 4148 E75 76 
0630 PIE : St. Petersburg, FL, US G4 1332 320 186 
0631 LAX : Los Angeles, CA, US DL 1029 321 191 

 3 
The raw scans of the boarding passes 4 
We will extract only the non-identifiable information of the passengers using the barcode of 5 
the IATA Resolution and Guide of Implementation for Bar Coded Boarding Pass (BCBP). 6 
The following example is a string of characters that can be inferred from the barcode of the 7 
boarding pass: 8 
M1XXXXXXXXXXXXXXXXXXXXEXXXXXXXCVGDENUA  5405  112Y022B0061 9 

15D>5180  K1112BUA  2A01675211312550  UA  N*30600  09 10 
Here the X’s represent the information deleted for privacy purposes and to protect the identity 11 
of the individual. From the remaining set of characters, we can therefore extract the following 12 
features: Airline code, baggage tag, nonconsecutive baggage tags, issuance date of the 13 
boarding pass, boarding pass issuer, boarding pass issuing carrier, compartment code, 14 
departing airport, departure date, destination airport, document type, fast track, flight number, 15 
frequent flyer number, international document verification, operating carrier, passenger 16 
description, passenger status, and the time stamp of the scan. 17 
For the prediction of the passenger flow we will only use the time stamp at which the scanning 18 
occurred, the flight number, the departure date, the destination airport, and the operating 19 
airline (to fully identify the flight, as there might be several flights with the same flight 20 
number that day at the origin airport, which is unlikely but possible). 21 
At a later stage in the project, we will incorporate the remaining information of the passengers 22 
to further characterize the profile of passengers that are arriving at the airport. For now, we 23 
will only focus on the actual number of passengers. 24 
For training purposes, we will need to have data for several days in order to make a prediction 25 
of the future incoming passenger flow. We will start working with a full month of data from 26 
a post-pandemic scenario at CVG. 27 

Seasonality 28 
The seasonality of the passengers over the year refers to the pattern of fluctuations on the 29 
number of passengers that is repeated over the years (with minor modifications), we can 30 
appreciate such trend in Figure 2. 31 
Logically these changes should be considered in order to improve the performance of the 32 
algorithm. The way we will approach this correction is by comparing the total daily 33 
passengers of the airport over the year and then refactoring the predictions that we are 34 
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making. In other words, we will upscale or downscale the predicted profiles to account for 1 
the difference between the time of the historic data used for the training and the time for 2 
which the prediction is being calculated. 3 
For this task, we will utilize the total daily number of incoming passengers at CVG in the last 4 
3 pre-pandemic years. 5 

Security Line Waiting Time 6 
The purpose of this data is to correct the time that the incoming passengers spend at the 7 
security checkpoint line when they arrive to the airport. 8 
There's a difference between the time at which the passengers enter the airport’s doors and 9 
the time at which they scan the boarding pass at the security checkpoint. This difference is 10 
not easy to forecast because it depends on the waiting time of the line before the screening. 11 
Nevertheless, CVG airport has already installed technology that allows to estimate the 12 
average waiting time at the line of the security checkpoint based on the number of portable 13 
devices that have Bluetooth or Wi-Fi activated in the proximity. This is achieved thanks to a 14 
set of sensors distributed strategically that track the minutes elapsed between the connection 15 
of the devices to each sensor. Future work will focus on the incorporation of this information 16 
in the algorithm to increase the performance of the pipeline. 17 

Outputs, The Histogram 18 
The daily passenger flow, and thus the prediction output, is visualized as a histogram with bins of 15 19 
minutes starting from 2:00am of the day for which we are making the prediction and ending 24 hours 20 
later (Figure 7). Although the CVG security checkpoint is only open from 3:30 a.m. to 8:50 p.m., we 21 
decided to provide the full 24-hour picture just in case there are extremal conditions where we get 22 
abnormal scans outside that range, such as flight delays that surpass 8:50 p.m. threshold. 23 

 24 
Figure 7. Predicted histogram of incoming passengers’ flow at the security checkpoint of CVG 25 
airport. Output of the algorithm for a particular day considering a range of 24 hours and 15-minute 26 
bins. 27 
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The architecture of algorithm is able to make individualized predictions for each flight, and then 1 
merge the result to obtain the histogram for the entire day. Thus, the additional prediction of the flow 2 
of passengers for each particular flight of the day will also be available. This information will be 3 
extremely valuable particularly for the respective airlines, that might as well exploit it for tailored 4 
passenger experience and advertisements along the airport. 5 

Data Visualization – Preliminary considerations 6 
We resort to the continuous scan density functions for all the flights of a given day. We utilize a 4-7 
hour window (240 minutes) before the scheduled departure time which we identify as Time Until 8 
Take-Off (TUTO). This will serve as a common reference to create a plot where all the scan densify 9 
functions can be shown together. We provide these plots for the same weekday throughout four 10 
different weeks (Figure 8). 11 
Notice that most of the mass is between 30 and 150 minutes in the TUTO scale.  However, the data 12 
we are working with is very noisy, some of the continuous curves are not as regular as they might 13 
seem. In addition to the human factor and the inherent uncertainty of the problem, the lack of scans 14 
has also a big impact in the irregularity of the curve’s shape (recall that not all the passengers scan 15 
their boarding pass in these scanners, its optional). 16 

 17 

Figure 8. Scan density functions for all the flights of four weekdays shown together using the Time 18 
Until Take-Off (TUTO) reference. 19 

Figures of Merit 20 
The goal is to have a prediction of the values for the histogram’s bins as close as possible to the real 21 
number of scans that were recorded within each 15-minute window of the day. 22 
The prior software installed at CVG was able to calculate the average of number of scans over the 23 
last days and make predictions in windows of 30 minutes for the next day. While the present algorithm 24 
is a substantial upgrade in the prediction method, the prior baseline serves as a proof of concept. 25 
The figures of merit to measure the performance of the predictor will be the followings: 26 

• Sum of absolute errors of each bar of the entire daily histogram. 27 
• Average absolute error of each bar of the entire daily histogram with respect to the number 28 

of 15-minute windows (or histogram bins). 29 
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Accuracy Type 1 1 
The first type of accuracy, 𝜂", is calculated by averaging all the differences of the histogram, 2 

𝜂" = 100	 &1 −
1
𝐵
)

|𝑦# − 𝑦,#|
max(𝑦# , 𝑦,#)

$

#%"

3 = 100	(1 − ‖𝑦, 𝑦,‖) (1) 

where 𝜂" is measured in percentage, 𝐵 represents the total number of bins in the histogram, 𝑦, is the 3 
prediction for a particular bin, 𝑦 is the ground truth, and ‖𝑦, 𝑦,‖ is the norm as we define it in Equation 4 
1. 5 

Accuracy Type 2 6 
The difference with respect to the previous accuracy definition is the consideration of a penalty for 7 
those bins that have greater truth than the prediction. In other words, when the number of scans 8 
predicted is lower than the observed scans, the penalty shall be applied. In order to be fair with the 9 
overall performance, the opposite scenario will be rewarded in the same proportion, 10 

𝜂& = 100	 &1 −
1
𝐵
)

𝑤# 	|𝑦# − 𝑦,#|
max(𝑦# , 𝑦,#)

	
$

#%"

3						6
		𝑤# = 1 + 	𝜕			if		𝑦# ≥ 𝑦,#

	
𝑤# = 1 − 	𝜕			else	

 (2) 

where 𝜕 represents the penalty.  11 

METHODOLOGY 12 

The Big Picture 13 
There are several algorithms that we have developed as part of this pipeline, where the common link 14 
is transparency. Figure 9 represents the different steps followed for data processing.  15 

 16 

Figure 9. High-level block diagram of the data processing pipeline. 17 
 18 

 19 

Data Preprocessing

Flight Selection

Genetic Algorithm 
Optimization for 
Flight Similarity

Individual Flight 
Prediction

Flight Prediction 
Dynamic Update 
with CEFYDRA

Handling outliers, cleaning of 
irregularities, feature selection. 

Hyperparameter optimization of the 
similarity formulas that compare 
different flights based on the available 
features (airline, departure time, 
capacity, destination, etc.)

Retrieval of information for the inference 
problem.

Pattern search algorithm to obtain the 
predicted flow of passengers for a specific 
flight.

Merged Passenger 
Flow Prediction

Aggregation of the different flight 
predictions.

Once the first passengers of the day have 
arrived, we can perform an update of the 
predictions for the remaining hours of the 
day. For this last task we utilize CEFYDRA.
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Data-Flow 1 
Before making the predictions, a preliminary treatment of the data is more than necessary. This 2 
involves several transformations to obtain the continuous passenger flow curves of a specific flight 3 
from the raw scans dataset of a given day. Figure 10 and Figure 11 represent the evolution of the 4 
data to obtain the predicted and ground truth histograms of the total incoming passengers at the 5 
security checkpoint. Similarly, the figures also show the Python functions (files with .py extension) 6 
in charge of the data transformations at each step. 7 
Each of the operational lines of the CVG security checkpoint is equipped with a scanner that performs 8 
the reading of the boarding pass, removes the associated personal information, and finally sends to 9 
the database those instances accumulated in their local memory.  10 
The raw scans data file for each day is built as the scanners send information of their readings. At 11 
2:00 a.m. the file is closed and a new one starts. In fact, the raw scans data cannot be treated until the 12 
full raw file is populated entirely. After getting it, we filter its entries to obtain the clean data file. At 13 
this point we focus on the identification of outliers such as boarding passes where the origin is not 14 
CVG, flights that are not for the current date, entries with missing information or unexpected values, 15 
etc. We also keep a record file of references to track the modifications carried out. Details such as the 16 
fact that IWA and AZA are the same airport are also handled in this transformation. 17 
The pushing of information from the scanners to the database occurs every few seconds (less than 60 18 
seconds between updates). Thus, we can assume that the reception of data is quasi-dynamic. However, 19 
the time stamp of raw scans in the database is not completely sorted because of the small delay in the 20 
update, the multiple scanners in place, and their asynchronous behavior. 21 
Instead of sorting all the scans in the clean file (which has thousands of entries), we first perform a 22 
breakdown of the different flights that were scheduled for that particular day and then we store their 23 
information in separate files (these will ultimately be referred as curated data files). Such approached 24 
is preferred because the total time required to sort all the flight files is significantly smaller than the 25 
sorting of the entire aggregated raw scans. 26 
On a different level, the flight number is not a unique identifier. There could be two different flights 27 
with the same flight number that same day. Thus, when performing the flight breakdown, we look at 28 
the time, the airline, and the flight number to make sure there are no wrong associations. 29 
What follows is the calculation of the difference between the scan time and the actual departure time 30 
of the flight, for each of the flight files. We use the scale of minutes for this computation and we refer 31 
to that difference as the relative scan time. In the curated data folders of Figure 10 and Figure 11, 32 
we sort the entries using the relative scan time (in descending order), while we keep the scan 33 
identification number for reference. Note that because of the quasi-dynamic update (and the 34 
simultaneous pushing of data from several devices) there might be cases where the identification 35 
numbers are not ordered in time (the greater the id does not necessarily imply that it was scanned 36 
later in time). 37 
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 1 
Figure 10. Flow of data in the prediction architecture. Letter A identifies past days (for which we have scans data) while letter B identifies future 2 
days (for which we will be making the prediction). RCCT, SW, PSPT and M are all python functions that make the transformations from one type 3 
of data to the next. The following is a dictionary of the abbreviations used: “Rel” means relative, “ContDist” means continuous distribution, and 4 
“Wgtd” means weighted. 5 

Raw Scans Data - Folder

“A” Schedules Data – Folder

(Refers to Past Days)

Schedule_Day_A1.xlsx
Schedule_Day_A2.xlsx
…

RawScans_Day_A1.xlsx
RawScans_Day_A2.xlsx
…

Generated Data - Folder

Day_A1 – Folder

Day_A2 – Folder
…

…

CleanScans.xlsx
References.xlsx

Curated_Data – Folder

Rela=ve_Scans – Folder

Con=nuous_Data – Folder

CurData_Flight_A1F1.xlsx
CurData_Flight_A1F2.xlsx
…

RelScans_Flight_A1F1.xlsx
RelScans_Flight_A1F2.xlsx
…

ContDist_Flight_A1F1.xlsx
ContDist_Flight_A1F2.xlsx
…

Selected Data for Predic<on - Folder

For Day_B1 – Folder

For Day_B2 – Folder

…
…

ContDist_Flight_A1F1.xlsx
ContDist_Flight_A2F1.xlsx
ContDist_Flight_A2F35.xlsx
…

For Flight BF_1

…

For Flight BF_2

…

Individual Flight Histogram Predic<on - Folder

For Day_B1 – Folder

For Day_B2 – Folder

…
…

Flight BF_1.xlsx
Flight BF_1.xlsx
…

Merged Histogram Predic<on - Folder

For_Day_B1.xlsx
For_Day_B2.xlsx
…

RCCT.py
Func=on for Reading, Cleaning, 
Cura=ng and Transforming the data 
from the discrete scans to the 
con=nuous distribu=on.

SW.py
Func=on for Selec=on and Weigh=ng of 
each flight based on the similarity with 
respect to the flight considered for 
predic=on. 

PSPT.py
Func=on that carries out the PaIern 
Search, generates a Predic=on, and 
finally Transforms the con=nuous data 
to a histogram.

M.py
Func=on to Merge the histograms of 
each scheduled flight crea=ng the 
final predic=on for that given day.

Architecture of the Predicted Data Flow

Raw Data - Folder

“B” Schedules Data – Folder

(Refers to Future Days)

Schedule_Day_B1.xlsx
Schedule_Day_B2.xlsx
…

Array_of_weights_Flight_BF_1.csv
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 1 
Figure 11. Flow of data to generate the ground truth. Letter A identifies past days (for which we have scans data) while letter B identifies future days 2 
(for which we will be making the prediction). RCCT, True_H, and True_HM are all python functions that make the transformations from one type 3 
of data to the next. The following is a dictionary of the abbreviations used: “Rel” means relative, and “ContDist” means continuous distribution. 4 

Generated Data - Folder

Day_A1 – Folder

Day_A2 – Folder
…

…

CleanScans.xlsx
References.xlsx

Curated_Data – Folder

Rela=ve_Scans – Folder

Con=nuous_Data – Folder

CurData_Flight_A1F1.xlsx
CurData_Flight_A1F2.xlsx
…

RelScans_Flight_A1F1.xlsx
RelScans_Flight_A1F2.xlsx
…

ContDist_Flight_A1F1.xlsx
ContDist_Flight_A1F2.xlsx
…

Merged True Histogram - Folder

For_Day_A1.xlsx
For_Day_A2.xlsx
…

RCCT.py
Func=on for Reading, Cleaning, 
Cura=ng and Transforming the data 
from the discrete scans to the 
con=nuous distribu=on.

True_HM.py
Func=on to create a Merged 
Histogram for that given day using 
the Rela=ve Scans of all the flights.

Architecture of the True Data Flow

Individual Flight True Histograms - Folder

TrueHist_Flight A1F_1.xlsx
TrueHist_Flight A1F_2.xlsx
…

True_H.py
Func=on to create a Histogram for 
each flight from the values of the 
Rela=ve Scans Data.

Day_A1 – Folder

Day_A2 – Folder
…

…

Raw Scans Data - Folder

“A” Schedules Data – Folder

(Refers to Past Days)

Schedule_Day_A1.xlsx
Schedule_Day_A2.xlsx
…

RawScans_Day_A1.xlsx
RawScans_Day_A2.xlsx
…

Raw Data - Folder

“B” Schedules Data – Folder

(Refers to Future Days)

Schedule_Day_B1.xlsx
Schedule_Day_B2.xlsx
…
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Another consideration in the transformation from the clean data to the curated files is the removal of 1 
duplicated instances. In other words, scans that refer to the same person for a given flight. This can 2 
occur, for example, in the event that the passenger voluntarily scans the boarding pass more than 3 
once, under the wrong belief that the device has not performed a correct reading. This corruption in 4 
the data is not necessarily consecutive in time, there can be situations when some other passengers 5 
have scanned their boarding passes in between (due to the simultaneous pushing of data or simply as 6 
a consequence of exiting and re-entering to the secured area). 7 
The n-plicates (extension of duplicates, in case there are n repetitions) have been removed preserving 8 
only the first scan recorded in the system. To remove the n-plicates of a given flight, we look at the 9 
seat number for the passengers. If there are several instances with the same seat that is considered a 10 
duplicate.  11 
There is one exception to the previous statement: some passengers have no information for their seat. 12 
Fortunately, those can be identified when the “passenger status” entry is standby, or the seat is 0, 00, 13 
000, 0000 or empty (we will not consider these cases as duplicated scans). This is not a mistake; it 14 
could be that the passenger is an airline employee. Thus, they do not get assigned a seat until the gate. 15 
Airline employees are the last to board, and that is the reason why the seat 000 is assigned to them. 16 
We will not see a seat assigned for passengers with standby passenger status.  17 

Transformation 1 18 
We now focus on the transformation of the relative scans of each flight to the passenger flow curves 19 
that we use for prediction, i.e., converting the discrete events (Figure 12 left) to continuous 20 
distributions (Figure 12 right). Logically, the separation between two relative scans is not constant. 21 
If there is any scan that was obtained passed the take-off time, this scan would be considered as a 22 
noisy datapoint. Thus, we focus only on the timeframe until schedule take-off time. The continuous 23 
functions are very valuable for the present algorithm as they allow to perform comparisons between 24 
flights. 25 

 26 
Figure 12. Graphical representation of the necessity of a transformation from the relative discrete 27 
scans to the continuous curve that represents the passenger flow. 28 

The continuous density function, the probability of having a scan at a certain time, and the rate of 29 
change in the scanners (how many passengers arrive to the security point every 𝑥 minutes, i.e., the 30 
velocity of passengers) are all directly related to the passenger flow curves that we generate.  31 

• In the first step of this transformation, we require the definition of two parameters: The first 32 
is the parameter 𝜏, which specifies the separation between every pair of adjacent points in the 33 
time axis of the continuous output. The second is 𝑤, the length of the sliding window that 34 
will traverse the discrete events, weighting the number of datapoints seen. Note that 𝜏 must 35 
be smaller or equal to '

&
. 36 

• For each sliding window, the relative position of a scan is weighted with respect to the center 37 
of the window using a sinusoidal distribution as the membership function. This can be seen 38 
as a fuzzy membership function or a soft gating strategy. 39 

 40 
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 1 
Figure 13. Graphical representation of the sliding window’s usage and the composition of the 2 
continuous function. Sinusoidal membership function chosen for the fuzzification of the discrete 3 
events.  4 

The choice of the sinusoidal membership of function shown in Figure 13 is further elaborated by 5 
Holguin et al. 2022 (20). In order to generate such distribution, the membership function should 6 
satisfy the following conditions: 7 

• Tangent to the horizontal axis with a null value in both extremes.  8 
• Bounded within the window. 9 
• With a unitary maximum value and tangent to the horizontal axis in the center. 10 
• Symmetric and smooth. 11 
• With two inflexion points, located at the first and third quarters of the range. 12 
• With antisymmetric behavior in the change from the left corner till its first inflexion point 13 

and the change from the inflexion point to the center. 14 

With these constrains, the Gaussian, the Cauchy or any other membership functions that have infinite 15 
range in the input dimension are discarded. A sinusoidal membership function, on the other hand, 16 
satisfies these requirements. Additionally, we could apply an exponent to each of the values of the 17 
sine function to make it flatter in the center or in the extremes at will. In Figure 14 we are using an 18 
exponent that is changing gradually as it approaches the corners of the function to make a flatter 19 
center while assuring the tangency with the horizontal axis. 20 
If these factors are increased significantly, we would see how the powered sine degenerates into a 21 
step function. Nevertheless, the last of the properties mentioned would be lost when we make the 22 
powers of the sine (despite weighting the exponent gradually). Thus, it results in a curve that has more 23 
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sudden changes and more fragile to noise. To avoid such behavior, we will stick to the sinusoidal 1 
membership function. 2 

 3 
Figure 14. Shape of the different possibilities for the sinusoidal exponential membership function for 4 
the range of the sliding window. The curves have been generated ranging the parameter 𝜓 from  0 to 5 
40 in steps of 0.6. The tangency of the extremes and the center is preserved, as well as its symmetric 6 
nature and the values of the corners and the middle point. 7 

Transformation 2 8 
Before moving on to the architecture for the prediction, we discuss one last transformation method 9 
that will be used at the end of the algorithm. That is precisely the generation of a histogram given a 10 
certain smooth function. In fact, it could be seen as the opposite to the previous technique which dealt 11 
with the conversion from the discrete events to a continuous function, i.e., we are now going to undo 12 
the change. 13 
In order to provide an interpretable and easy-to-understand diagram to the airport authorities, the final 14 
output of the algorithm will be the histogram plot with the flow of passengers over time. 15 
The width of the histogram has been fixed at 15 minutes, but in the software we created it could be 16 
modified by the user, if needed. The variable that represents this width is identified as 𝑟, for 17 
resolution. Logically, the value of 𝑟 has to be greater or equal than 𝜏.  Figure 15 explains graphically 18 
the goal of the present task. Similarly, the span of the horizontal axis of all the flights is fixed at 3 19 
hours, which means that if there are any passengers arriving to the airport 3 hours before the scheduled 20 
take-off time, they would not be considered. (Although, for the figures we will utilize a smaller scale 21 
for simplicity.) 22 

 23 
Figure 15. Graphical representation of the necessity of a transformation from the continuous curve 24 
that represents the passenger flow to the histogram with a bin size of 𝑟. 25 
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To solve this problem, we consider the sum of segments within each “bin” of the histogram (defined 1 
by the resolution 𝑟). Then, this sum is divided by the total sum of segments under the area, which 2 
results into a fraction (Figure 16). We can obtain the height of the histogram simply multiplying this 3 
fraction by the total number of passengers estimated for the flight. 4 

 5 
Figure 16. Graphical representation of the calculation for the fraction used to convert the continuous 6 
curve to the discrete histogram. 7 

The second part of the transformation to the bar plot deals with the weighting of the histogram’s bars 8 
based on the valleys and peaks of the curve. 9 
We first study the variance of the segments that are enclosed within a bin. Then, the system is able to 10 
add or subtract a fraction of that variance if there is a peak or a valley within the bin, respectively. 11 
The variance is also weighted by the proximity of the peak or the valley to the center of the bin, 12 
making a zero contribution if these occur in either extreme of the bin and maximum if in the center. 13 
The third and last part of the transformation refers to an iterative algorithm to get to integer predictions 14 
in the histogram’s bars. In the end, the predictions should not have decimal points, i.e., a fraction of 15 
a person has no meaning. This subroutine divides the fractional portion of the bins so that the entire 16 
histogram adds up to the total number of people forecasted for that particular flight. Note that this 17 
problem would be very simple if that last requirement was not applicable. In other words, we could 18 
simply round each bar to the closest integer, but that would result in a total number of people different 19 
from the predicted value.  20 
The algorithm starts by rounding the bar whose fractional value is closest to an integer value. The 21 
remaining fractional mass (negative or positive) that has been added or subtracted is shared between 22 
the two neighbor bars equally (provided that these bars are still fractional). If there is only one 23 
neighbor bar then the mass is transmitted fully to this. If there are no neighbor bars with fractional 24 
values then the mass is discarded. After applying this to one bar, the same process is applied to all 25 
the remaining non-integer bars. The remaining mass with number of people to distribute along the 26 
bars should be updated at each step. In the Algorithm 1, we provide a pseudocode for such function, 27 
whose time and space complexities are 𝑂(𝑛(#)*& ) and 𝑂(𝑛(#)*) respectively, where 𝑛(#)* is the 28 
number of bins. The Algorithm 1 can be further optimized to 𝑂(𝑛(#)* ∙ log(𝑛(#)*)) time complexity 29 
and 𝑂(𝑛(#)*) space complexity. We also provide the pseudocode for such reduction in Algorithm 2. 30 

 31 

 32 

 33 

 34 

 35 
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Algorithm 1: Part 3 of Transformation 2 with 𝑂(𝑛(#)*& ) time complexity and 𝑂(𝑛(#)*) space 
complexity. 

 
 
 
 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

 
17 

18 
 

Input: Current non-integer histogram 𝒉𝟎, total number of passengers predicted for the flight 
𝑝,. 
Output: Updated histogram with integer values 𝒉𝒇, corrected total number of passengers 
𝑝. = 𝑝, ± 1        
 
𝒉𝒇 ← 𝒉𝟎; 
Remaining indexes to convert: 𝒌 ← all; 
while 𝒌 is not empty do 
       Find index 𝑖 of bin ℎ from 𝒌 set: min

#
Sround[𝒉𝒇(𝑖)] −	𝒉𝒇(𝑖)S	; 

       pop 𝑖 from 𝒌 set; 
       Find neighbor bins 𝒃 (max 2) of 𝒉𝒇(𝑖): 𝒃 ← neigs[𝒉𝒇(𝑖)]; 
       𝒃𝒌 ← 𝑗 for index 𝑗 in 𝒃 if 𝑗 in 𝒌 set; 
       𝑑 ← len(𝒃𝒌); 
       if 𝑑 is not 0 do 

            𝑚 ←
0123456𝒉𝒇(#):;	𝒉𝒇(#)=

>
 ; 

            for each index 𝑗 in 𝒃𝒌 do 
                  𝒉𝒇(𝑗) ← 𝒉𝒇(𝑗) + 𝑚; 
            end 
       end 
       𝒉𝒇(𝑖) ← round[𝒉𝒇(𝑖)]; 
end 

𝑝. ← ) 𝒉𝒇(𝑙)
)"#$%

?%"

; 

return 𝒉𝒇, 𝑝. 
  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 
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Algorithm 2: Part 3 of Transformation 2 with 𝑂(𝑛(#)* ∙ log(𝑛(#)*)) time complexity and 𝑂(𝑛(#)*) 
space complexity. 

 
 
 
 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

 
35 

36 

Input: Current non-integer histogram 𝒉𝟎, total number of passengers predicted for the flight 
𝑝,. 
Output: Updated histogram with integer values 𝒉𝒇, corrected total number of passengers 
𝑝. = 𝑝, ± 1        
 
𝒉𝒇 ← 𝒉𝟎; 
Remaining indexes to convert: 𝒌 ← all; 
Get vector of differences: 𝒓 ← |round[ℎ] − 	ℎ| for ℎ in 𝒉𝒇; 
𝒔 ← sort(𝒓) ; 
𝒒 ← index	of	𝑠 in 𝒓 for 𝑠 in 𝒔; 
Get minimum value and index: 𝑠, 𝑖		 ← 𝑠,, 𝑡,; 
pop 𝑖 from 𝒌 set; 
while 𝒌 is not empty do 
       Find neighbor bins 𝒃 (max 2) of 𝒉𝒇(𝑖): 𝒃 ← neigs[𝒉𝒇(𝑖)]; 
       𝒃𝒌 ← 𝑗 for index 𝑗 in 𝒃 if 𝑗 in 𝒌 set; 
       𝑑 ← len(𝒃𝒌); 
       Use an auxiliary index:  𝑎 ← 𝑖; 
       Use a flag: 𝑓 ← False; 
       if 𝑑 is not 0 do 
            𝑚 ← *

>
 ; 

            for each index 𝑗 in 𝒃𝒌 do 
                  𝒉𝒇(𝑗) ← 𝒉𝒇(𝑗) + 𝑚; 
            end 
            𝜹 ← Sround[𝒉𝒇(𝑗)] −	𝒉𝒇(𝑗)S	for each index 𝑗 in 𝒃𝒌; 
            𝜁 ← min

@,#
	𝛿 for 𝛿 in 𝜹; 

            if 𝜁 < 𝑠 do 
                 𝑠 ← 𝜁; 
                 𝑖 ←	index of 𝜁 in 𝜹; 
                 pop 𝑖 from 𝒌 set; 
                 𝑓 ← True; 
            end 
       end 
       𝒉𝒇(𝑎) ← round[𝒉𝒇(𝑎)]; 
       if not 𝑓 do 
            𝑖 ←next 𝑞 in 𝒒 that is not in 𝒌 set; 
            𝑠 ← Sround[𝒉𝒇(𝑖)] −	𝒉𝒇(𝑖)S; 
            pop 𝑖 from 𝒌 set; 
       end 
end 

𝑝. ← ) 𝒉𝒇(𝑙)
)"#$%

?%"

; 

return 𝒉𝒇, 𝑝. 
  

 1 
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On a further note, the result obtained when we use the 1st and 2nd transformations consecutively, may 1 
differ slightly from the true histogram that is generated from the discrete events. This occurs because 2 
we used a sliding window in the 1st transformation whereas the calculation of a histogram directly 3 
from the scans uses crisp boundaries. Nonetheless, the latter may result into sudden unexpected peaks 4 
or valleys in the predicted histogram. The fact that we used the sliding window instead of the crisp 5 
boundaries makes the prediction more resilient to noise.  6 
For the scans data shown in Figure 17, should the width of the sliding window be chosen wisely, 7 
there is nearly no difference between true histogram (calculated using crisp boundaries) and predicted 8 
histogram (considering the 1st transformation and all the three parts of the 2nd transformation). 9 

 10 
Figure 17. Study of the difference between the predicted histogram and the updated histogram (after 11 
applying the 2nd and 3rd parts of the Transformation 2) with respect to the true histogram that was 12 
calculated without using any transformation, i.e., from the discrete scans. 13 
 14 
Flight Similarity 15 
The following section explains the algorithm that we use for the optimal selection of the past flights 16 
that are considered in the prediction of a future flight. Each day of the week will be treated 17 
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independently. That is, the prediction made for the scheduled flights of a Monday, for example, will 1 
be based on the information of the Mondays of the past weeks. We use the index 𝑑 to refer to a generic 2 
day of the week. The algorithm uses the information from the last 𝛺 weeks to select the flights. 3 
Logically, we will select those with the greatest similarity with respect to the flight for which the 4 
passenger flow prediction is being made. We denote the reference of the flights of the predicted day 5 
as 𝒇𝒍𝒅(0) where 0 is the index that identifies the week. Analogously, we denote the reference of the 6 
flights of the same day 𝑤 weeks ago as 𝒇𝒍𝒅(−𝜔) (where 𝜔 is bounded between −1 and 𝛺). Then, we 7 
build a similarity matrix that compares the flights of 𝒇𝒍𝒅(0) and 𝒇𝒍𝒅(−𝜔), namely 𝐕𝐝(0, −𝜔), and 8 
we sort the entries of this matrix for each of the scheduled flights, thus obtaining the sorted matrix 9 
𝐕𝐝∗(0, −𝜔). The matrix 𝐕𝐝∗(0, −𝜔) records the past flights that have the closest resemblance to the 10 
future flights of 𝒇𝒍𝒅(0). Finally, we extract the first 𝜆 flights of 𝐕𝐝∗(0, −𝜔)  for each scheduled flight 11 
in 𝒇𝒍𝒅(0). Repeating this calculation for the last 𝛺 weeks, we obtain the set of flights that will be 12 
used to predict the future passenger flow for each scheduled flight in 𝒇𝒍𝒅(0). A graphical explanation 13 
of the prior process is shown in Figure 18. 14 

 15 
Figure 18. Graphical explanation of the selection of flights for the prediction of the scheduled flights, 16 
𝒇𝒍𝒅(0), for a day 𝑑 of the week, based on the information from the past flights 𝒇𝒍𝒅(−𝜔) for 𝜔 ∈17 
[−1, 𝛺]. 18 
 19 
For the calculation of the similarity between two flights, the following approach is chosen: The 20 
information we have for week 0, for which the prediction is being carried out, is comprised in the 21 
input variables of each flight. Among others, scheduled departure time, destination, operating carrier, 22 
flight number, number of seats and type of vehicle. Information of bookings is not usually available 23 
a week prior to the scheduled departure time, therefore we do not consider it at this point. The formula 24 
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that we use for the computation of the similarity, based on the most relevant available input features 1 
of each flight, is 2 

𝑠E,(#) = 𝑠E,(#) =
𝑣E,(F#GH + 𝑣E,(>H*F + 𝑣E,(IEJJ + 𝑣E,(

.?)KG + 𝑣E,(*HEF*

5
 (3) 

where 𝑠E,(#)  is the similarity score and 𝑣 denotes each of the values for the 5 variables that we consider 3 
in this calculation: departure time (𝑡𝑖𝑚𝑒), destination (𝑑𝑒𝑠𝑡), operating carrier (𝑐𝑎𝑟𝑟), flight number 4 
(𝑓𝑙𝑛𝑢𝑚), and number of seats (𝑠𝑒𝑎𝑡𝑠). Each of these values is defined as, 5 

𝑣F#GH =
𝑤"

𝑤& +	 |𝑡𝑖𝑚𝑒E − 𝑡𝑖𝑚𝑒(|
 (4) 

𝑣>H*F = z		𝑤L				𝑖𝑓					𝑑𝑒𝑠𝑡E = 	𝑑𝑒𝑠𝑡(	
0																																												

 (5) 

𝑣IEJJ = z		𝑤M				𝑖𝑓					𝑐𝑎𝑟𝑟E = 𝑐𝑎𝑟𝑟(	
	0																																											

 (6) 

𝑣.?)KG = z		𝑤N				𝑖𝑓				𝑓𝑙𝑛𝑢𝑚E =	𝑓𝑙𝑛𝑢𝑚(	
0																																																						

 (7) 

𝑣*HEF* =
𝑤O

𝑤P +	|𝑠𝑒𝑎𝑡𝑠E − 𝑠𝑒𝑎𝑡𝑠(|
 (8) 

where 𝑤", 𝑤&, 𝑤L, 𝑤M, 𝑤N, 𝑤O, and 𝑤P are weights that need to be chosen. 6 
Next we propose a novel method for the selection of the weights that can also be used in other forecast 7 
problems that are similar to the one explained in this section. First of all, we distinguish two types of 8 
similarities: 9 

• Similarity based on the input data; the features described above. 10 
• Similarity based on the output passenger flow continuous curves. 11 

The second type of similarity is calculated as 12 

𝑠E,(QKF = 𝑠E,(QKF =
1

1 +{1𝑀∑ [𝑓E(𝑡#) − 𝑓((𝑡#)]&R
#%"

 (9) 

where 𝑀 is the total number of points that we want to evaluate in the 𝑓E and  𝑓( curves that represent 13 
the passenger flow. In other words, we compare the values for the flow of both flights 𝑎 and 𝑏 at each 14 
𝑡#, as shown in Figure 19. 15 

 16 
Figure 19. Computation of the similarity for two different passenger flow profiles 𝑎 and 𝑏. Display 17 
of the generic values 𝑓E(𝑡#) and 𝑓((𝑡#) at a given 𝑡#. 18 

Time

Passenger 
Flow
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Ultimately, we want to choose those flights whose passenger profile curves resemble more to the 1 
flight for which we are making the prediction. Therefore, ideally, we would choose the weights in 2 
such a way that both similarities are equal. However, given the large number of flights and 3 
comparisons that need to be carried out, the real objective will be to minimize the difference between 4 
similarities for the entire set of comparisons. 5 
This is a very simple optimization problem, where there are only 7 parameters. We solved it 6 
stochastically using a Genetic Algorithm (GA). 7 
For the optimization of the parameters, we focus only on weeks −1 to 𝛺. That is, we exclude the 8 
week for which we are making the prediction, the week with index 0, since for this we lack 9 
information on the output passenger curves. 10 
First, we compute all the resulting input similarity matrices for day 𝑑, 𝐕𝐝(−1,−𝜔), 𝜔 ∈ [−2, 𝛺]. In 11 
the same way we calculate the output similarity matrices (those that result from the comparison of 12 
the passenger flows, denoted by 𝐅𝐝(−1,−𝜔), 𝜔 ∈ [−2, 𝛺]. Another important aspect to keep in mind 13 
is that the similarity based on the inputs features depends on the selection of weights, and therefore 14 
is variable throughout the optimization process, while the similarity based on outputs is fixed. (The 15 
convention adopted for the symbols is 𝐕 for variable and 𝐅 for fixed.) 16 
Subsequently, we obtain the difference matrices, 𝐃𝐝, defined as 17 

𝐃𝐝(−1,−𝜔) = 𝐕𝐝(−1,−𝜔) − 𝐅𝐝(−1,−𝜔), 𝜔 ∈ [−2, 𝛺] (10) 

We then add the information of each entry in these matrices defining a figure of accuracy 18 
𝜌>(−1,−𝜔), 19 

𝜌>(−1,−𝜔) = ) ) 𝐃𝐝(−1,−𝜔)[𝑟, 𝑐]
)'()%

J%"

)*(+%

I%"

 (11) 

where 𝑛IQ?* and 𝑛JQ'* are the dimensions of 𝐃𝐝(−1,−𝜔), which match with the length of 𝒇𝒍𝒅(−1) 20 
and 𝒇𝒍𝒅(−𝜔) respectively. Finally, the fitness function of the problem is the inverse of the average 21 
of the accuracies "

S,TTTT
. Figure 20 shows the graphical representation of the calculation of the fitness 22 

value for the Genetic Algorithm. 23 
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 1 
 2 
Figure 20. Graphical representation of the calculation of the fitness values. Input data-based 3 
similarity matrices denoted by 𝐕𝐝(−1,−𝜔), output data-based similarity matrices denoted by 4 
𝐅𝐝(−1,−𝜔), and difference matrices denoted by 𝐃𝐝(−1,−𝜔), where 𝜔 ∈ [−2, 𝛺]. 5 

Each chromosome of the Genetic Algorithm has 7 genes that represent the weights for the calculation 6 
of the input data-based similarity matrices. Each chromosome generates a total of 𝛺 − 1 𝐕𝐝 matrices 7 
that are subsequently compared to the 𝐅𝐝 matrices. Obviously, throughout the epochs of the evolution 8 
process, the 𝐅𝐝 matrices should be stored and queried rather than re-generated at every iteration (for 9 
computational purposes). Figure 21 shows how a generic population of chromosomes would look 10 
like, their associated matrices, and the resulting fitness values obtained after the calculation of the 𝐃𝐝 11 
matrices. 12 
 13 
 14 
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 1 
Figure 21. Generic population of chromosomes (chromosome indexes identified by {c=index}). Each 2 
chromosome generates 𝛺 − 1 matrices of 𝐕𝐝 type and 𝛺 − 1 matrices of 𝐃𝐝 type, in the end the 3 
information of the 𝐃𝐝 matrices is converted into a fitness value that is used in the optimization process 4 
of the Genetic Algorithm. 5 

Up to this point, we have referred all the variables with respect to a specific day of the week, 𝑑. 6 
Therefore, it is necessary to carry out this same optimization process for each of the 7 calendar days 7 
of the week (Monday through Sunday). That is, we use 7 Genetic Algorithms to obtain different 8 
optimal parameters for each day (Figure 22). On the other hand, it is necessary to correct and update 9 
these 49 parameters (7 weights for each of the 7 days) from time to time. We have set the step for re-10 
optimization at 1 week. Although the differences in the values of the weights between one week and 11 
another may not be very large, the error that we can accumulate due to a lack of update in one or two 12 
months may significantly jeopardize the overall prediction. Therefore, it is advisable to carry out as 13 
many updates as possible, which in this case is when we apply a weekly separation between updates. 14 
Finally, we do also incorporate a recirculation of some of the fittest chromosomes from the prior GA 15 
to the next to reduce the computational cost. 16 
 17 
 18 
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 1 
Figure 22. The seven Genetic Algorithms for each of the days of the week, with the fittest 2 
chromosomes for each optimization process. 3 
 4 
Scaling to account for Seasonality 5 
We are using the information of past years to scale the curves of the current year and make fair 6 
comparisons between them. First, we will distinguish between two load factors: 7 
Load factor 𝜉U(𝑑(−𝜔)) for the day 𝑑 (Monday, Tuesday, …, or Sunday) of a given week −𝜔 (𝜔  8 
weeks before the current week for which we are making the prediction), for a given year 𝑦. We define 9 
this variable as the ratio between the total number of passengers that came into the airport that day of 10 
the year, and the total number of seats available aggregating the seats for all flights for that day of the 11 
year (Figure 23 shows an example of a daily evolution of 𝜉U(𝑑(−𝜔)) for a given airport), 12 

𝜉U(𝑑(−𝜔)) =
Passengers	for	day	𝑑(−𝜔)	in	year	𝑦
Seats	for	day	𝑑(−𝜔)	in	year	𝑦

. (12) 

Load factor 𝐿𝐹(𝑓) for the flight 𝑓, defined as the ratio between the number of passengers that boarded 13 
into flight 𝑓 and the total number of seats available for that particular flight, 14 

𝐿𝐹(𝑓) =
Passengers	boarded	in	𝑓
Seats	available	in	𝑓

. (13) 

GA2

GA3

GA4

GA5

GA1

GA6

GA7

𝑤1,1 𝑤1,2 𝑤1,3 𝑤1,4 𝑤1,6 𝑤1,7𝑤1,5

𝑤2,1 𝑤2,2 𝑤2,3 𝑤2,4 𝑤2,6 𝑤2,7𝑤2,5

𝑤3,1 𝑤3,2 𝑤3,3 𝑤3,4 𝑤3,6 𝑤3,7𝑤3,5

𝑤4,1 𝑤4,2 𝑤4,3 𝑤4,4 𝑤4,6 𝑤4,7𝑤4,5

𝑤5,1 𝑤5,2 𝑤5,3 𝑤5,4 𝑤5,6 𝑤5,7𝑤5,5

𝑤6,1 𝑤6,2 𝑤6,3 𝑤6,4 𝑤6,6 𝑤6,7𝑤6,5
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 1 
Figure 23. Evolution of the airport’s load factor for each day (bounded between 0 and 1). In the 2 
horizontal axis we use the day index 𝑑(−𝜔) that represents the 𝜔FV week before the 0FV week, being 3 
the 0FV week the week for which we are calculating the passenger flow prediction. 4 

The load factor for the day can in fact be approximated as the average of the load factors of each 5 
individual flight that same day. If 𝒇𝒍𝒅,𝒚(−𝜔) represents the indices of the flights for that given day, 6 
and [f] identifies a specific entry in the vector, then 7 

𝜉U(𝑑(−𝜔)) ≈
1

𝑛.?#XFV*
) 𝐿𝐹�𝒇𝒍𝒅,𝒚(−𝜔)[f]�

)-+#./0%

.%"

,					with			𝑛.?#XVF* = S𝒇𝒍𝒅,𝒚(−𝜔)S. (14) 

Thus, when we are using the continuous passenger flow curves of a flight 𝒇𝒍𝒅,𝟎(−𝜔)	[f] for the 8 
prediction of 𝒇𝒍𝒅,𝟎(0)	[g] (for a given g) we can actually correct the load factor with the 9 
transformation 𝛽(∙), considering the information from the previous year to the prediction 𝜉;", 10 

𝛽�𝐿𝐹�𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]�� = 𝐿𝐹�𝒇𝒍𝒅,𝟎(−𝜔)[f]�
𝜉;"(𝑑(0))
𝜉;"(𝑑(−𝜔))

. (15) 

Nevertheless, this transformation may result in a value that is bigger than 1, and all the load factors 11 
should be bounded between 0 and 1. Thus, we have to apply the following correction, 12 

𝐿𝐹′�𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]� = 𝜗 �𝛽�𝐿𝐹�𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]��� (16) 

where 13 

𝜗(𝑥) = z1			if		𝑥 > 1	
0			if		𝑥 < 0	 

(17) 

The corrected number of passengers 𝑃Y(∙) for that flight can be calculated from the total number of 14 
seats 𝑆(∙), 15 

𝑃Y�𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]� = 𝑆�𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]� ∙ 𝐿𝐹′�𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]�. (18) 

Finally, we scale the curve with the factor 𝜅 16 

𝜅 =
𝐿𝐹′&𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]0
𝐿𝐹&𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]0

=
𝜗 2𝛽4𝐿𝐹&𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]056

𝐿𝐹&𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]0
=
𝜗 7𝐿𝐹&𝒇𝒍𝒅,𝟎(−𝜔)[f]0 ∙

𝜉$%(𝑑(0))
𝜉$%(𝑑(−𝜔))

=

𝐿𝐹&𝒇𝒍𝒅,𝟎(−𝜔)[𝑓]0
. 

(19) 

For the scaling, we multiply each of the segments of the curve by the factor 𝜅. Below we prove that 17 
this scaling will not affect on the fractions described in Figure 16. 18 

1
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The total sum of the segments before the scaling, 𝐴Q?> is defined as ∑ 𝑏Q?>#
)%1.%
#%"  where 𝑏Q?># 1 

represents the value before scaling of 𝑖FV segment and 𝑛*HX* is the total number of segments. After 2 
scaling, each segment is 𝑏)H'# = 𝜅 ∙ 𝑏Q?>#, then 𝐴)H' is ∑ 𝑏)H'#

)%1.%
#%" .  3 

The fraction of a given portion of the segments from 𝑖 = 𝑖, to 𝑖. before the scaling is 𝑓𝑟𝑎𝑐Q?> =4 
∑ ((+,#
#-
#2#3
[(+,

 and the fraction for that same portion after scaling is 5 

𝑓𝑟𝑎𝑐)H' =
∑ 𝑏)H'#
#-
#%#3
𝐴)H'

=
∑ 𝑏)H'#
#-
#%#3

∑ 𝑏)H'#
)%1.%
#%"

=
∑ 𝜅 ∙ 𝑏Q?>#
#-
#%#3

∑ 𝜅 ∙ 𝑏Q?>#
)%1.%
#%"

==
∑ 𝑏Q?>#
#-
#%#3
𝐴Q?>

= 𝑓𝑟𝑎𝑐Q?> . (21) 

To optimize the space utilized, we apply the scaling factors as we are populating the similarity 6 
matrices without storing the scaled curves. After choosing the 𝜆 first flights (most similar flights), we 7 
then perform again the scaling to those curves that will be used for the prediction. 8 
 9 
Prediction 10 
Once we have selected the past flights that will serve for the inference of each scheduled future flight, 11 
we perform the following steps: 12 

1. Group the data of the selected flights, (as defined by the similarity function that was 13 
optimized by the GA). Note that we already accounted for seasonality when selecting the 14 
flights and rescaling them.  15 

2. Query the weight of each of these past flights.  16 
3. Perform the weighted average at each point of the continuous curves to obtain the final 17 

prediction of the scheduled flight. 18 
4. Transform the continuous curve of predicted scans density to the histogram. 19 

After the histogram predictions for all the scheduled flights have been performed, we then merge the 20 
histograms of all the scheduled flights for a given day, to obtain the final prediction of the entire day. 21 
 22 
RESULTS 23 

The results obtained from the execution of all the aforementioned phases have been collected 24 
in Table 2. For the calculation of the performance, we used the figures of merit defined in this paper. 25 

Table 2. Average figures of merit for the months of October 2021 to February 2022 (FOM1 and 26 
FOM2). Outlier days (which show unusual lack of scans) were excluded for the calculation (some 27 
months show up to 2 days where very few scans or even no scans were recorded). 28 

Month FOM 1 FOM 2 
October 2021 70.37 % 68.34 % 

November 2021 70.08 % 73.22 % 
December 2021 70.15 % 72.36 % 

January 2022 70.64 % 73.59 % 
February 2022 68.56 % 65.82 % 
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Next, we showcase some examples of the predictions made. Figures 24, 25, 26, and 27 represent the 30 
comparison between the predictions and the ground truth for 4 consecutive days of January of 2022, 31 
from the 16th to the 19th. On the other hand, Figures 28 and 29 show the similarity matrices of 2 days, 32 
May 13th 2021, and May 20th 2021. 33 



 30 

 1 

 2 
Figure 24. Passenger flow histogram with the prediction and the ground truth for the date 16th of January of 2022 using 15-minute bins showing the 3 
entire day (starting at 2:00am the 16th until 2:00am the 17th). With an accuracy of 79.65 % for FOM 1 and of 79.71 % for FOM 2. 4 



 31 

 1 
Figure 25. Passenger flow histogram with the prediction and the ground truth for the date 17th of January of 2022 using 15-minute bins showing the 2 
entire day (starting at 2:00am the 17th until 2:00am the 18th). With an accuracy of 77.46 % for FOM 1 and of 78.09 % for FOM 2. 3 
 4 



 32 

 1 
Figure 26. Passenger flow histogram with the prediction and the ground truth for the date 18th of January of 2022 using 15-minute bins showing the 2 
entire day (starting at 2:00am the 18th until 2:00am the 19th). With an accuracy of 77.73 % for FOM 1 and of 81.03 % for FOM 2. 3 
 4 



 33 

 1 
Figure 27. Passenger flow histogram with the prediction and the ground truth for the date 19th of January of 2022 using 15-minute bins showing the 2 
entire day (starting at 2:00am the 19th until 2:00am the 20th). With an accuracy of 71.08 % for FOM 1 and of 76.06 % for FOM 2. 3 
 4 
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 1 

                  2 
Figure 28. Flight similarity matrices using the 13th of May of 2021 as the basis for the comparison (horizontal reference indicates the flight index of 3 
a scheduled flight) and looking back 3 weeks (vertical reference indicates the flight index of a past week). Top matrices are the original similarity 4 
matrices, bottom matrices are the sorted similarity matrices. 5 
 6 
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 1 

      2 
Figure 29. Flight similarity matrices using the 20th of May of 2021 as the basis for the comparison (horizontal reference indicates the flight index of 3 
a scheduled flight) and looking back 3 weeks (vertical reference indicates the flight index of a past week). Top matrices are the original similarity 4 
matrices, bottom matrices are the sorted similarity matrices. 5 
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INTERPRETATION OF THE RESULTS 1 
The predictions and the observations follow similar trends. The algorithm is capable of correctly 2 

inferring the fluctuations that exist within the same day: the upward trend in the morning, the decrease in 3 
passengers during midday and the subsequent increase throughout the afternoon. In addition, the predictions 4 
made from one day to the next also adapt correctly to the different patterns that each day has. 5 
In terms of consistency of results, we have seen that there is a high homogeneity throughout the year. 6 
Although it should be noted that there are isolated days where there is a low population of recorded 7 
passengers (for unknown external reasons). It is in these kinds of outliers that we see the biggest differences 8 
between the predictions and the observations. However, these cases of "corrupted" data can be resolved by 9 
improving the data acquisition process. 10 
On the other hand, during the morning, when there is a peak of incoming passengers, is more difficult to 11 
make accurate predictions. This is due to the high waiting time that originates in the security checkpoint 12 
line as a direct consequence of a high volume of passengers. Thus, there is a bigger than usual delay between 13 
the true arrival time of the passenger to the airport complex and the scanning of the boarding pass, which 14 
then translates into more uncertainty for the prediction problem. Future improvements of the algorithm will 15 
include the integration of the line speed itself to mitigate this issue. This data is already available for the 16 
airport authorities at CVG from the Bluetooth technology installed to monitor the flow of the line. 17 
In the similarity matrices we are comparing the similarity between the scheduled flights and the past flights 18 
of a recent day. For most of the scheduled flights there is one past flight that is very similar (substantially 19 
higher similarity than all the others). In fact, the closer this past day is to the actual day for which we are 20 
making the prediction, the bigger the one-to-one correspondence between flights. In other words, when we 21 
try to compare past flights that departed several weeks ago, it gets harder to identify similarities between 22 
the flights. This is primarily due to the accumulation of small changes in some of the flight schedules, which 23 
may not be substantial from one week to the other, but when we aggregate several weeks, they play an 24 
important role. 25 
 26 
CONCLUSIONS 27 

We have created an explainable algorithm capable of performing high-quality passenger flow 28 
predictions at the security checkpoint of an airport. To do so, we have used different data-processing blocks 29 
that transform the information in a transparent manner, without resorting to neural networks. 30 
We created a collaboration between the University of Cincinnati and the Cincinnati / Northern Kentucky 31 
International Airport (CVG) to install and test the processing pipeline presented. The results obtained show 32 
that the developed algorithm is highly competitive. Based on the figures of merit defined we can state that 33 
the project was successful and that we significantly improved the predictive power of CVG systems for the 34 
prediction of the passenger flow. This not only has scientific implications that justify the use of this 35 
algorithm, but also offers the opportunity to create a commercial product that can be integrated in other US 36 
airports besides CVG. Indeed, future work should focus on the integration of this algorithm in more 37 
locations so that the corresponding authorities (TSA, airlines, airport managers, etc.) have access to an 38 
invaluable piece of information that concerns the security and the congestion at the airport.  39 
Quoting Brian Cobb, Chief Innovation Officer of CVG airport: “At CVG, we’re redefining predictive 40 
analytics and our operational outcomes with Dr. Viaña’s Explainable AI. Aviation’s long attempt to rely 41 
on certainties of peak travel days or seasonality to schedule labor and systems has been obliterated post-42 
pandemic where there are no absolutes to travel norms domestically or around the world. Explainable AI is 43 
the way forward to the quality and consistency we strive for in our industry and beyond.” 44 

 45 
 46 
 47 
 48 
 49 
 50 

 51 
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