
Initialization and Plasticity of CEFYDRA: Cluster-first
Explainable FuzzY-based Deep self-Reorganizing Algorithm

Javier Viaña1[0000-0002-0563-784X], Stephan Ralescu2[0000-0002-3969-1342],

Vladik Kreinovich3[0000-0002-1244-1650], Anca Ralescu4[0000-0002-7564-3540],

and Kelly Cohen5[0000-0002-8655-1465]

1,2,3,4,5 University of Cincinnati, Cincinnati OH 45219, USA
1 Massachusetts Institute of Technology, Cambridge MA 02139, USA

vianajr@mail.uc.edu
vianajr@mit.edu

Abstract. The CEFYDRA is a network of units whose outputs are obtained us-
ing a fuzzy Takagi-Sugeno-Kang approach. At each unit, the information is
clustered in fuzzy sets and then mapped using logistic functions and Cauchy
membership functions. There are two primary contributions in this paper. The
first is a set of suggestions for the initialization criteria of the parameters of a
CEFYDRA. The second is a proposal for the self-reorganizing algorithm that
modifies the location of the clusters of each unit as the algorithm is trained with
gradient descent.

Keywords: Explainable AI, Neural Networks, Fuzzy Logic, Gradient Descent,
Deep Learning.

1 Introduction

Currently, the initialization criteria of weights and biases of deep neural networks are
arbitrary and naive [1-2]. For the most part, they are chosen stochastically from a
distribution that depends on the number of connections that converge on each neuron.
This means that during the first phases of training the predictions are not accurate. In
fact, part of these preliminary iterations may not be useful, i.e., until there is a mini-
mum logical organization of the parameters, there is no "effective" learning. Consid-
ering the impact that neural networks are having in today's world, it is convenient to
define new initialization criteria that may improve the initial predictions and even
reduce the computational cost of learning by suppressing unnecessary epochs. How-
ever, little can be done from the classic neural network concept based on weights and
activation functions, which require this sort of initialization techniques.

A less explored but very attractive way to solve this problem is to use networks
that leverage other mathematical strategies at the unit level. Of course, this not only
implies a fundamental redefinition of the neural network concept, but also requires the
development of the respective update formulas for its parameters. The CEFYDRA, a
network derived from the algorithms proposed by [3-7], whose prediction system of

Preprint Version

Paper Awarded with the Best Paper Award

Publisher: Springer, Nature

Collected work provisionally entitled: Applications of Fuzzy Techniques: Proceedings of the
2022 Annual Conference of the North American Fuzzy Information Processing Society NAFIPS

Book series: Advances in Intelligent Systems and Computing

Edited by: Scott Dick, Vladik Kreinovich, Pawan Lingras

2

every unit is more complex than just adding the weights and applying an activation
function, allows for this type of improvement in the initialization.

Another aspect that we study in this paper is the concept of self-reorganization or
plastic modifications in the morphology of the algorithm's structure. This idea has
proven to be excellent in multiple algorithms like self-organized feature maps [9], or
adaptive control strategies [8]. Indeed, several researchers believe that Artificial Gen-
eral Intelligence (AGI) can only be achieved through the emergence of high-level
reorganizations that result from the bottom-level interactions of a multiagent complex
system. This concept of reorganization in algorithmic architectures has been led main-
ly by the field of bio-inspired evolutionary optimization systems [10-13]. In fact, the
terrestrial natural mechanisms, that have been perfected over millions of years, are the
best example of intelligent behaviors (and the only) that we know of. However, there
is yet much that needs to be done in the field in order to realistically reproduce the
level of intelligence that nature exhibits.

2 On How to Initialize the Parameters Without Prior
Knowledge of the Hidden Features

The architecture of a CEYDRA is a network of units that leverage a fuzzy Takagi-
Sugeno-Kang approach for inference [3-7]. The inputs of every unit are mapped by
different multidimensional logistic functions and grouped in fuzzy clusters defined by
Cauchy membership functions. All the parameters are optimized following a gradient
descent learning.

In our formulation, the upper left index in parenthesis represents the layer refer-
ence (0 for the output layer, 1 for the first hidden starting from the right), and the
bottom index represents the unit within that layer. We use 𝐱𝐢, 𝐲𝐢, 𝐲$𝐢 and 𝐭𝐢 to denote the
𝑖"# input, output, predicted output, and the output of a generic unit, respectively. Fi-
nally, indexes 𝑘 and 𝑗 refer to the cluster and input dimension within the unit. The
membership functions are obtained from Cauchy distributions,

𝜇!"!
(𝜆) (𝐱𝐢) =

1

1 + (
𝐭	(𝝀'𝟏) (𝐱𝐢)− 𝐚𝐜𝒉𝝀

(𝝀)

𝐛𝐜𝒉𝝀
(𝝀) (

+ = +1 +,-
𝑡	(,'-)
"(𝐱𝐢) − 𝑎!""!

(𝜆)

𝑏!""!
(𝜆) 1

+.

"/-

2

0-

. (1)

In [4-5], the functions for the approximation of each cluster are linear, however, we
want to constrain the output of each unit between 0 and 1. Thus, we use logistic func-
tions instead, for a generic unit ℎ𝜆 within layer 𝜆,

𝑟$#𝜆
(𝜆) (𝐱𝐢) =

1

1 + exp 3− 𝐦𝐜𝒉𝝀
(𝝀) ∙ 𝐭	(𝝀+𝟏) (𝐱𝐢) − 𝑛$#𝜆

(𝜆) 8
. (2)

Therefore, the parameters of each cluster are 𝐚𝐜𝒉𝝀
(𝝀) , 𝐛𝐜𝒉𝝀

(𝝀) , 𝐦𝐜𝒉𝝀
(𝝀) and 𝑛+,𝜆

(𝜆) .
Unlike in the case of [4-5], which could be seen as a CEFYDRA of just an output

layer, a complex CEFYDRA with hidden layers poses the following challenge: How
should the parameters in the hidden layers be initialized? For those units in the output

3

layer we can use the method carried out described in [4-5], i.e., clustering the input-
output space, and then fitting the logistic functions and the Cauchy membership func-
tions. However, the units in the hidden layers have no prior information of what the
hidden variables are or should be. Thus, they need to be initialized in a different way.
Fig. 1 represents the difference in the initialization process of the parameters for the
hidden layers and for the output layer.

Fig. 1. Initialization steps for the parameters of a unit in the output layer (top flow) and the
hidden layer (bottom flow). Example network of 4,3,1 configuration with 2 inputs. Initializa-
tion steps for the unit of the output layer: Cluster the joint input-output space and fit the logistic
functions and the membership functions based on the clusters. Initialization steps for the unit of
a hidden layer: Locate first the membership functions based on the input space and second the
logistic functions, then map all the datapoints to proceed to the next layer.

This section focuses on the initialization method proposed for the parameters of
both the Cauchy membership functions and the logistic functions of each unit in the
hidden layers.

2.1 Initialization of the Cauchy membership functions.

We first find the centers of the Cauchy membership functions, which are represented
by the parameter 𝑎+,. Once all the centers of a particular unit have been chosen, we
can then determine their amplitudes, defined by 𝑏+,. It is necessary to incorporate a
random component on the selection of the centers, otherwise, if it were done non-
stochastically, all the units of a given layer could be identical, a situation that we want
to avoid. The method we propose is to choose one of the training points randomly and

4

initialize the center of a given cluster so that it matches the location of such point. We
would then repeat this operation until all the clusters of the unit have their centers
located in the input space. It is also important to choose different points for each of
the clusters to avoid having duplicated membership functions in the unit.

As it happens in every AI problem, it is convenient to get rid of any outliers in a
pre-processing step. Otherwise, we could be initializing the center of the membership
function in a location that is perhaps too far from the bulk of the data.

The next step is the determination of 𝑏+,, we suggest studying each of the dimen-
sions individually to assign a value to 𝑏+,. Fig. 2 explains a technique to choose these
values by considering the midpoints between each of the centers of the clusters. We
use the average of the left and right separation (denoted by 𝑠+,+-.), to obtain 𝑏+, =
/!"#,!-/!,!%#

0
. This way, we can assure a fair distribution of the coverage of each mem-

bership function between the neighboring clusters without overlapping them more
than the necessary. To those clusters that lie on the edges we directly assign the sepa-
ration value of the only neighbor cluster they have, as seen in Fig. 2. Note that we can
also calculate the widths of the middle clusters directly as 𝑏+, =

1!%#-1!"#
2

.

Fig. 2. Calculation of the 𝑏-. values based on the centers of all the clusters, 𝑎-., of a given unit.

The Algorithm 1 shows the pseudocode for these steps.

5

Algorithm 1: Initialization process for the Cauchy membership functions of a generic
unit 𝛼 in the hidden layer 𝜆.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

Inputs: 𝐓	(𝛌+𝟏) matrix of dimension 𝑄 × 𝐻𝜆-., where 𝑄 is the number of 𝐭𝐢	(𝛌+𝟏)
training instances and 𝐻𝜆-. is the dimension of the unit’s input space.
Outputs: 𝐀𝜶	

(𝛌) matrix of dimension 𝐶 × 𝐻𝜆-., where 𝐶 is the number of clusters,
with the centers of the membership functions. 𝐁𝛂	

(𝛌) matrix of dimension 𝐶 ×
𝐻𝜆-., with the amplitude of the Cauchy membership functions.

𝐀𝜶	

(𝛌) , 𝐁𝛂	
(𝛌) ← 𝟎

for each cluster 𝑘 in 𝐶 do
Choose a random point: 𝐀𝜶	

(𝛌) [𝑘, :] ← 𝐓	(𝛌+𝟏) [rand(1, 𝑄), :]	𝐢𝐟	𝐧𝐨𝐭	𝐢𝐧	 𝐀𝜶	
(𝛌)

end
for each dimension 𝑗 in 𝐻𝜆-. do

Auxiliar vector of sorted centers: 𝒅𝒋 ← sort 𝐀𝜶	
(𝛌) [: , 𝑗]

for each cluster 𝑘 in range 2 to 𝐶 do

𝑠+6.,, ←
𝒅𝒋[𝑘] − 𝒅𝒋[𝑘 − 1]

2
end
First cluster: 𝐁𝛂	

(𝛌) [1, 𝑗] ← 𝑠.,0
Last cluster: 𝐁𝛂	

(𝛌) [𝐶, 𝑗] ← 𝑠76.,7
for each cluster 𝑘 in range 2 to 𝐶 − 1 do

𝐁𝛂	
(𝛌) [𝑘, 𝑗] ←

𝑠+6.,+ + 𝑠+,+-.
2

end
end
return 𝐀𝜶	

(𝛌) , 𝐁𝛂	
(𝛌)

2.2 Initialization of the Logistic functions.

Now that we have the Cauchy membership functions initialized, we leverage them in
order to initialize the logistic functions. We first divide the points of the training da-
taset (or a representative training sample to speed up the calculations) within each of
the clusters that are now defined by each membership function. To do so, we evaluate
every training datapoint and search for the maximum membership value, and then
assign the point to the cluster whose membership value is the biggest, as shown in
Fig. 3.

6

Fig. 3. Assigning of a cluster to the training datapoints based on the highest membership value
of the Cauchy functions. Example of a two dimensional input space for visualization purposes,
with 4 clusters.

Instead of searching for the parameters of a logistic function directly, we first

choose the parameters of a linear function and then we approximate this function with
the logistic function. This transformation allows us to perform an easier search of the
parameters. Fig. 4 is a graphical demonstration of the accuracy in the approximation
of different multidimensional linear functions with multidimensional logistic func-
tions.

Fig. 4. Examples of approximation of the samples generated from six different linear functions
(whose results have been normalized between 0 and 1) using multidimensional logistic func-
tions.

Linear
Logistic

7

Following with the initialization of the preliminary linear functions, for every di-
mension we get the minimum and maximum value of the points that belong to each
cluster, in Fig. 5 identified as 𝑢 and 𝑣, respectively.

Fig. 5. Identification of the minimum and maximum values of the points in the clusters for
every dimension. Example of 4 clusters, and 2 input dimensions, 𝛼 and 𝛼 + 1, for visualization
purposes.

Next, we introduce the concept of relative slope, which is the slope in the relative
coordinates defined by every 𝑢 and 𝑣 pair, such that for a particular dimension, 𝑢 is
the relative origin and the distance 𝑣 − 𝑢 is a unit of length.

For all the linear functions, we first choose randomly the values of the relative
slopes, then we adapt the value of the relative slope to get the absolute slope using the
𝑢 and 𝑣 limits (Fig. 6), and finally we choose the value of the intercept. For the ran-
dom selection of the relative slopes, for simplicity we decided to bound the random
number between 1 and -1 (also to avoid dominance of a given slope over the others).

Fig. 6. Random choice of the relative slope in dimension 𝛼 and the transformation to the abso-
lute slope using the limits of the cluster 𝑡/#$%	

(0) and 𝑡/#&'	
(0) .

8

Note that the use of a relative slope is essential to assure variance in the range of
the data for dimensions where the difference 𝑡8&'(

(9) − 𝑡8&)*	
(9) is small. After all

the absolute slopes of a linear function have been found, we still do not have a value
for 𝑛. The intercept will be generated in the next step, where we normalize the entire
hyperplane (as of now with a null intercept) between two values 𝜘:;< and 𝜘:1=.
These are both chosen randomly from a user-defined range, which we advise setting
to [0,1]. First we need to map all the training points of the cluster to generate the out-
put values, we do this using the current absolute value of the slopes. Then, we retrieve
the minimum and maximum output values, 𝑟>

(?6.)
+&)* = min

𝐭𝐢	(𝛌)
	{𝐦𝐚𝐛𝐬 ∙ 𝐭𝐢	(𝛌) } and

𝑟>
(?6.)

+&'(= max	
𝐭𝐢	(𝛌)
	{𝐦𝐚𝐛𝐬 ∙ 𝐭𝐢	(𝛌) } and we normalize the linear function so that those

two limiting points are now 𝜘. and 𝜘0, respectively. Thus, we obtain a new definition
of the linear function, which we denote as 𝑟>

(?6.)
+
<DE, from the old 𝑟>

(?6.)
+
FGH,

𝑟>
(?6.)

+
<DE(𝑥) − 𝜘.

𝑟>
(?6.)

+
FGH(𝑥) − 𝑟>

(?6.)
+&)*

=
𝜘0 − 𝜘.

𝑟>
(?6.)

+&'(− 𝑟>
(?6.)

+&)*

, (3)

𝑟>
(?6.)

+
<DE(𝑥) =

(𝜘0 − 𝜘.) ∙ 𝑟>
(?6.)

+
FGH(𝑥)

𝑟>
(?6.)

+&'(− 𝑟>
(?6.)

+&)*

−
(𝜘0 − 𝜘.) ∙ 𝑟>

(?6.)
+&)*

𝑟>
(?6.)

+&'(− 𝑟>
(?6.)

+&)*

+ 𝜘., (4)

𝑟>
(?6.)

+
<DE(𝑥) =

(𝜘0 − 𝜘.) ∙ 𝑟>
(?6.)

+
FGH(𝑥)

𝑟>
(?6.)

+&'(− 𝑟>
(?6.)

+&)*

+
𝜘. ∙ 𝑟>

(?6.)
+&'(− 𝜘0 ∙ 𝑟>

(?6.)
+&)*

𝑟>
(?6.)

+&'(− 𝑟>
(?6.)

+&)*

. (5)

Where I-6I#
J.

(0"#)
!&'(6 J.

(0"#)
!&)*

 is the factor needed to multiply the absolute slopes to

obtain the final values, and
I#∙ J.

(0"#)
!&'(6I-∙ J.

(0"#)
!&)*

J.
(0"#)

!&'(6 J.
(0"#)

!&)*

 is the intercept.

Finally, we want to fit with logistic functions the sample instances obtained from
the linear functions. To do so, we can transform the instances using a mapping of the
type 𝑇(𝑥) = log 3.

=
− 18 and then fitting them with a linear regression on the trans-

formed space. The resulting slope vector and intercept obtained from this last fitting
are the parameters of the final logistic expression. Note that 𝑥 values of 0 or 1 should
be discarded for the fitting, as they would lead to an error (one can instead apply an
upper and lower threshold to avoid overflow issues).

Algorithm 2 shows the initialization process described for the logistic functions.

9

Algorithm 2: Initialization process for the logistic functions of a generic unit 𝛼 in
the hidden layer 𝜆.

1
2
3
4
5
6
7
8
9

10

11

12

13
14

15

16

17

18

19
20

21
22
23
24
25
26

Inputs: 𝐓	(𝛌+𝟏) matrix of dimension 𝑄 × 𝐻𝜆-., where 𝑄 is the number of 𝐭𝐢	(𝛌+𝟏)
training instances and 𝐻𝜆-. is the dimension of the unit’s input space.
Outputs: 𝐌𝛂	

(𝛌) matrix of dimension 𝐶 × 𝐻𝜆-., where 𝐶 is the number of clus-
ters, with the slope vectors. 𝐧𝛂	

(𝛌) vector with 𝐶 entries, with the intercepts.

𝐌𝛂	

(𝛌) , 𝐧𝛂	
(𝛌) ← 𝟎

Variable to denote the points that belong to each cluster: 𝐩𝛂	
(𝛌) ← 𝟎

for each point 𝐭𝐢	(𝛌+𝟏) in 𝐓	(𝛌+𝟏) do
Get the dominant cluster for the point: 𝑐 ← max

+
𝜇+(𝐭𝐢	(𝛌+𝟏))

to 𝐩𝛂	
(𝛌) {𝑐}	𝐚𝐝𝐝	𝑖

end
for each cluster 𝑘 do

for each dimension 𝑗 in 𝐻𝜆-. do
Get bottom limiting point: 𝑡,&)*	

(λ+1) ← min
"2(𝐱𝐢)	(𝜆+1)

𝐩𝛂	
(𝛌) {𝑘}		

Get upper limiting point: 𝑡,&'(
(λ+1) ← max

"2(𝐱𝐢)	(𝜆+1)
𝐩𝛂	

(𝛌) {𝑘}	

𝑚JDG ← rand(−1,1)
𝐦𝐚𝐛𝐬[𝑗] ←

𝑚JDG

𝑡,&'(
(λ+1) − 𝑡,&)*	

(λ+1)

end
𝑟𝛼(λ) 5123 ← min

𝐭𝐢	
(𝛌+𝟏)

	"𝐦𝐚𝐛𝐬 ∙ 𝐭𝐢	
(𝛌+𝟏) #	

𝑟𝛼(λ) 5145 ← max
𝐭𝐢	

(𝛌+𝟏)
	"𝐦𝐚𝐛𝐬 ∙ 𝐭𝐢	

(𝛌+𝟏) #

𝜘., 𝜘0 ← rand(0,1)
𝐦′𝐚𝐛𝐬 ←

𝜘0 − 𝜘.
𝑟8

(λ)
𝑘𝑚𝑎𝑥

− 𝑟8
(λ)

𝑘𝑚𝑖𝑛

∙ 𝐦𝐚𝐛𝐬

𝑛′1N/ ←
𝜘. ∙ 𝑟8

(λ)
𝑘𝑚𝑎𝑥 − 𝜘0 ∙ 𝑟8(λ) 𝑘𝑚𝑖𝑛
𝑟8

(λ)
𝑘𝑚𝑎𝑥

− 𝑟8
(λ)

𝑘𝑚𝑖𝑛

Map instances with linear function: 𝐩′𝛂	
(𝛌) {𝑘} ← 𝐩𝛂	

(𝛌) {𝑘} ∙ 	𝐦O
𝐚𝐛𝐬 + 𝑛′1N/

Use the transformed space: 𝑇(𝐩O𝛂	
(𝛌) {𝑘}) ← 𝐥𝐨𝐠 m .

𝐩3𝛂	(λ) {+}
− 1n

Fit the transformed instances: 𝐦𝐟𝐢𝐧𝐚𝐥, 𝑛V;<1G ← 𝐟𝐢𝐭	𝐥𝐢𝐧𝐞𝐚𝐫	𝑇(𝐩O𝛂	
(𝛌) {𝑘})	

Store the values of the slope vector and intercept:
𝐌𝛂	

(𝛌) [𝑘, :] ← 𝐦𝐟𝐢𝐧𝐚𝐥
𝒏𝜶	

(𝝀) [𝑘] ← 𝑛V;<1G
end
return 𝐌𝛂	

(𝛌) , 𝐧𝛂	
(𝛌)

10

In Fig. 7 and 8 we can see how the initialized mappings would look like for a
CEFYDRA of 2 hidden layers and 2 units in each layer considering 4 and 10 clusters
in each unit respectively.

Fig. 7. Double input double output example to visualize the initialize mappings of each unit
considering 4 clusters for each unit and 3 layers with 2 units per layer.

Fig. 8. Double input double output example to visualize the initialize mappings of each unit
considering 10 clusters for each unit and 3 layers with 2 units per layer.

11

3 On the Plasticity of CEFYDRA

It should be noted that unlike a regular neural network where there are only weights
and biases, in a CEFYDRA, there are four different types of parameters. The slopes
and the intercepts of the logistic functions, and the centers and widths of the Cauchy
membership functions. The last type, which we identify with 𝑏+,, cannot be negative
or null, because it defines the separation between the points of the function that reach
the 0.5 membership value in the dimension 𝑗 (let us remember that the Cauchy mem-
bership function is symmetric about its center of maximum membership value). If the
CEFYDRA optimizes .

N!2
 and − 1!2

N!2
 instead of 𝑎+, and 𝑏+, (which would eliminate the

denominator of the norm’s argument in the Cauchy membership function), then none
of the clusters would be able to reach a negative value of 𝑏+, during the learning.
Nonetheless, the width of a cluster can still become very small. In order to avoid any
of these scenarios, a minimum threshold should be defined, ⟡, such that if it is
crossed, we know that the cluster should be removed. Here resides the plasticity of the
CEFYDRA; we delete any cluster that during the training satisfies 𝑏+, ≤⟡.

In order to keep constant the total number of clusters in the system, we also add a
new cluster in a different unit of the network, thus avoiding any possibility of conver-
gence to a naive system. This section aims to address the question of which unit
should receive an additional cluster when a different cluster of the system has been
deleted. To do so, we introduce the concept of clocks. Each clock is associated to a
unit, and measures the cumulative change over the epochs that the unit has suffered.
The clock of a unit is

⌘8
(?) =u ⌘D

8
(?)

W

DX.

, (6)

where 𝐸 represents the total number of epochs till the moment, and

⌘D
8

(?) =
1

𝐶 ∙ 𝐻?-.
u u w

∆ 𝑤+,8
(?)

𝑤+,8
(?) w

Y0%#

,X.

7

+X.

. (7)

Note that we use the absolute value of the relative change in the parameters (unlike
𝑏+,8

(?) , the parameters 𝑎+,8
(?) , 𝑚+,8

(?) , and 𝑛+8
(?) are not necessarily positive).

Then, we use the method of the roulette wheel using the values of the clocks of all
the units of the system to randomly assign a unit for the inclusion of a new cluster.
Those clocks that have a greater value would have a greater probability of being se-
lected, while those that have not changed much would have less probability. Fig. 9
shows an example of how these clocks might be at a given epoch for a CEFYDRA
of 5 layers.

12

Fig. 9. Example scenario of the clocks for a system of 5 layers with 4, 6, 5, 4, and 4 units at a
given epoch of the training phase.

Restarting the clocks every few epochs could be considered a good practice, since

during the training process there might be phases when the units are evolving and
others when they have converged. Thus, having a high clock value from the first
epoch might not be representative of which unit are currently more subject to change.
All in all, we make the assumption that the units which are changing the most are also
the ones that deserve the highest chance to have a new cluster.

The clock of the unit that has deleted the cluster should be rebooted as well, in or-
der to eliminate the chances of introducing its own cluster again, and also to provide
the unit with a chance so it can evolve for the following epochs without that unneces-
sary cluster.

If at any point of the training process, a certain unit has only one cluster, then there
would be no non-linearity in that unit and it wouldn’t be contributing to the system.
Thus, we could remove that cluster as well and assign it to a different unit. However,
being conservative, there should also be some mechanism to limit the number of clus-
ters of a certain unit to avoid converging towards the extremal case of having a single
unit with all the initial clusters of the system. This would imply the generation of new
units a certain locations, which we do not cover in this section but it would follow a
similar principle to the one described for the inclusion of a new cluster.

When introducing a new cluster in a unit, we can follow the same procedure that
we proposed for the initialization of the clusters’ parameters: Random selection of a
training point as the center of the cluster, using the neighbor clusters’ centers to obtain
the width of the membership function, and querying the points whose dominant clus-
ter is the new one to initialize the slope and the intercept of the logistic function.

This concept of self-evolving morphology is certainly powerful in many applica-
tions that require adaptation of the system to better model the reality, rather than using
a fixed definition of neurons and layers. Indeed, the entire structure of the algorithm
changes autonomously with the learning, granting it the feature of plasticity.

𝑥3

𝑥4

𝑥2

𝑥1 𝑡1	(1) 𝑦1

𝑦2

𝑦3

𝑦4

𝑡2	(1)

𝑡3	(1)

𝑡4	(1)

𝑡1	(2)

𝑡2	(2)

𝑡3	(2)

𝑡4	(2)

𝑡5	(2)

𝑡5	(3)

𝑡4	(3)

𝑡1	(3)

𝑡3	(3)

𝑡2	(3)

𝑡6	(3)

𝑡1	(4)

𝑡2	(4)

𝑡3	(4)

𝑡4	(4)

min max
Clock Counter

13

The concept of explainability comes from the fact that we can retrieve the domi-
nant clusters at each unit (since they are represented by the Cauchy membership func-
tion), and then combine all the dominant approximation functions to generate a final
function that serves as an approximation of the inputs and outputs in the proximity of
the instance. The precise algorithm to retrieve such analytic explanation will be cov-
ered in a different paper.

4 Conclusions

We proposed an initialization method for all the parameters of a CEFYDRA to guar-
antee enough diversity in the hidden outputs of the network during the first epochs of
the training. We have seen that the mapping generated at every unit is significantly
more complex than the mapping of a regular neural unit that leverages weights and an
activation function. We also provided an algorithm for the self-reorganization strategy
of CEFYDRA, which allows to relocate unnecessary clusters in other units of the
network, and thus grants the system the ability to adapt its morphology to the data.
Finally, we introduced the concept of clocks in order to measure the rate of change of
every unit. These clocks serve as counters to decide for the most adequate relocation
of the clusters. It could be argued that such technique resembles a certain natural evo-
lutionary optimization algorithm. Future work should first focus on identifying the
best example of a natural system that exhibits a similar self-evolving behavior, and
then fine tune the proposed algorithm so it can be actually bio-inspired.

Acknowledgements

The project that generated these results was supported by a grant from the ”la Caixa”
Banking Foundation (ID 100010434), whose code is LCF / BQ / AA19 / 11720045.

References

1. Springer J. M., Kenyon, G. T.: It's Hard for Neural Networks to Learn the Game of Life.
In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1-8 (2021).

2. Narkhede, M. V., Bartakke, P. P., Sutaone, M. S.: A review on weight initialization strate-
gies for neural networks. Artificial Intelligence Review 55, 291–322 (2022).

3. Viaña, J., Ralescu, S., Cohen, K., Ralescu, A., Kreinovich, V: Localized Learning A Pos-
sible Alternative to Current Deep Learning Techniques. In: Melin, P., Castillo, O. (eds.)
Studies in Computational Intelligence (2021).

4. Viaña, J., Cohen, K.: Fuzzy-Based, Noise-Resilient, Explainable Algorithm for Regres-
sion. In: Explainable AI and Other Applications of Fuzzy Techniques. 1st edn. Springer,
Cham (2022).

5. Viaña, J., Ralescu, S., Cohen, K., Ralescu, A., Kreinovich, V.: Extension to multi-
dimensional problems of a fuzzy-based explainable and noise-resilient algorithm”. In: Pro-
ceedings of the 14th International Workshop on Constraint Programming and Decision
Making CoProd’2021, Szeged, Hungary (2021).

14

6. Viaña, J., Ralescu, S., Cohen, K., Ralescu, A., Kreinovich, V.: Why Cauchy Membership
Functions: Reliability. Advances in Artificial Intelligence and Machine Learning, (To Ap-
pear).

7. Viaña, J., Ralescu, S., Cohen, K., Ralescu, A., Kreinovich, V.: Why Cauchy Membership
Functions: Efficiency. Advances in Artificial Intelligence and Machine Learning, 1(1), 81-
88 (2021).

8. Kohonen, T.: Self-organization and associative memory, 8. Springer, Berlin (1989).
9. Verschure, F. M. J. P., Kröse, B. J. A., Pfeifer, R.: Distributed adaptive control: The self-

organization of structured behavior. Robotics and Autonomous Systems 9(3), 181-196
(1992).

10. Arana-Daniel, N., Lopez-Franco, C., Alanis, A.: Bio-inspired Algorithms for Engineering.
Elsevier, Amsterdam, Netherlands (2018).

11. S. Olariu, A.Y. Zomaya (Eds.), Handbook of Bioinspired Algorithms and Applications,
Chapman & Hall/CRC (2006).

12. Simon, D.: Evolutionary optimization algorithms. John Wiley & Sons (2013).
13. Tonda, A. Inspyred: Bio-inspired algorithms in Python. Genet Program Evolvable Mach

21, 269–272 (2020).

